Evaluation of Radioactive Air Contamination due to a Forest Fire within the Exclusion Zone on June 5–8, 2018

М. М. Talerko1, Т. D. Lev1, S. I. Kireev2, V. О. Каshpur1, G. G. Кuzmenko1

1Institute for Safety Problems of Nuclear Power Plants, NAS of Ukraine,
12, Lysogirska st., Kyiv, 03028, Ukraine
2State Specialized Enterprise “Ecocenter”,
6, Shkilna st., Chornobyl, 07270, Ukraine

DOI: doi.org/10.31717/2311-8253.19.2.7


The results of simulation of the radioactive aerosol atmospheric transport due to a fire in forest areas in the Chornobyl Exclusion Zone (near the ISF-2) during June 5–8, 2018 are presented. To assess its consequences, a modeling complex of the Institute for Safety Problems of Nuclear Power Plants was used, which includes a mesoscale weather forecast model WRF, model of convective plume formation over the fire area, and the Lagrangian–Eulerian diffusion radionuclide atmospheric transport model LEDI. Model calculations for the radioactive combustion products transport are carried out at a distance of up to 100 km from the fire area. The results of sampling of burned forest litter and upper layer of soil, made for estimation of total activity stock at the 2 fire sites, are presented. The average 137Cs surface contamination density was obtained to be about 2.85 MBq/m2 (with a variability of this value from 1.02 to 5.40 MBq/m2). According to calculations, the maximum value of the 137Cs activity in the surface air in Kyiv in some periods of the fire could reach values of about 1 mBq/m3, in Chornobyl – about 10 mBq/m3. The overall results are in agreement with the measurements of the 137Cs activity in the air carried out by the network of Automated Radiation Monitoring System ASKRO posts of the SSE “Ecocenter”, as well as air sampling data in Mila village of the Kyiv region (results of the State Scientific Technical Centre on Nuclear and Radiation Safety).

Keywords: wildland fires, resuspension, radionuclide, atmospheric transport, modeling, Exclusion zone.


1. Hao W. M., Bondarenko O. O., Zibtsev S., Hutton D. (2009). Vegetation fires, smoke emissions, and dispersion of radionuclides in the Chernobyl Exclusion Zone. Dev. Environ. Sci., vol. 8, pp. 265–275.

2. Yoschenko V. I., Kashparov V. A., Protsak V. P., Lundin S. M., Levchuk S. E., Kadygrib A. M., Zvarich S. I., Khomutinin Yu. V., Maloshtan I. M., Lanshin V. P., Kovtun M. V., Tschiersch J. (2006). Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: Part I. Fire experiments. J. Env. Rad., vol. 86, pp. 143–163.

3. Goldammer J. G., Каshparov V., Zibtsev S., Robinson S. (2015). Best practices to combat wildfires in contaminated areas and recommendations on firemen safety under fires on the radioactive contaminated territories. Global Fire Monitoring Center (GFMC), Freiburg — Basel — Кyiv. (in Russ.)

4. Kashparov V. A., Zhurba M. A., Kireev S. I., Zibtsev S. V., Myronyuk V. V. (2015). Evaluation of expected exposure doses for fire-fighting participants in the Chernobyl exclusion zone in April 2015. Nuclear Physics and Atomic Energy,
vol. 16, no. 4, pp. 399–407. (in Russ.)

5. Garger E. K., Kashpur V. A., Skoryak G. G., Gora A. D., Kurochkin A. A., Lisnichenko V. (2004). Aerosol radioactivity and disperse structure at the Chernobyl NPP during the period of forest fires. Agroecol. J.,
vol. 3, pp. 6–12. (in Russ.)

6. Kulan A. (2006). Seasonal 7Be and 137Cs activities in surface air before and after the Chernobyl event. J. Env. Rad., vol. 90, pp. 140–150.
doi: 10.1016/j.jenvrad.2006.06.010.

7. Lujaniene G., Šapolaite J., Remeikis V., Lujanas V., Jermolajev A., Aninkevicius V. (2006). Cesium, americium and plutonium isotopes in ground level air of Vilnius. Czechoslovak Journ. Physics, vol. 56(D), pp. D 55-D 61.
doi: 10.1007/s10582-006-1077-3.

8. Evangeliou N., Balkanski Y., Cozic A., Hao W. M., Mouillot F., Thonicke K., Paugam R., Zibtsev S., Mousseau T. A., Wang R., Poulter B., Petkov A., Yue C., Cadule P., Koffi B., Kaiser J. W., Møller A. P. (2015). Fire evolution in the radioactive forests of Ukraine and Belarus: future risks for the population and the environment. Ecol. Monogr., vol. 85 (1), pp. 49–72.

9. Kashparov V. A., Lundin S. M., Kadygrib A. M., Protsak V. P., Levtchuk S. E., Yoschenko V. I., Kashpur V. A., Talerko N. N. (2000). Forest fires in the territory contaminated as a result of the Chernobyl accident: radioactive aerosol resuspension and exposure of fire-fighters. J. Env. Rad., vol. 51, pp. 281–298.

10. Yoschenko V. I., Kashparov V. A., Levchuk S. E., Glukhovskiy A. S.,
Khomutinin Yu. V., Protsak V. P., Lundin S. M., Tschiersch J. (2006). Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: Part II. Modeling the transport processes. J. Env. Rad., vol. 86, pp. 260–278.

11. Evangeliou N., Zibtsev S., Myroniuk V., Zhurba M., Hamburger T., Stohl A., Balkanski Y., Paugam R., Mousseau T. A., Møller A. P., Kireev S. I. (2016). Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment. Scientific Reports, vol. 6: 26062. doi: 10.1038/srep26062.

12. Hohl A., Niccolai A., Oliver C., Melnychuk D., Zibtsev S., Goldammer J. G., Petrenko M., Gulidov V. (2012). The human health effects of radioactive smoke from a catastrophic wildfire in the Chernobyl Exclusion Zone: A worst case scenario. J. Earth Bioresources and Life Quality, vol. 1, pp. 1–34.

13. Evangeliou N., Balkanski Y., Cozic A., Hao W. M., Møller A. P. (2014). Wildfires in Chernobyl-contaminated forests and risks to the population and the environment: A new nuclear disaster about to happen. Environ. Int.,
vol. 73, pp. 346–358.

14. Bogorad V., Lytvynska T., Shevchenko I., Dybach A., Slepchenko O. (2016). Radiation consequences of a fire in the Exclusion zone of the Chernobyl nuclear power plant. Nuclear and Radiation Safety, vol. 69, no. 1, pp. 64–68. (in Russ.)

15. Kovalets I. V., Romanenko A. N., Anulich S. N., Ievdin I. A. (2015). Forecasting of the radioactive contamination by Cs-137 following fires in Chernobyl Exclusion Zone in April-May, 2015. Proceedings of the Decision Support Systems, Theory and Practice Conference (DSS 2015), June 2015, Kiev, Ukraine, pp. 62-65,
doi: 10.13140/RG.2.2.20098.79047.

16. Mandel J., Beezley J. D., Kochanski A. K. (2011). Coupled atmosphere-wildland fire modeling with WRF 3.3 and SFIRE 2011. Geosci. Model. Dev.,
vol. 4, pp. 591–610.

17. Ager A. A., Lasko R., Myronuik V., et al. (2019). Managing wildland fire risk and radionuclide resuspension in areas contaminated by the Chernobyl reactor explosion. Sci. Total Environ. (in press).

18. Amiro B. D., Sheppard S. C., Johnston F. L., Evenden W. G., Harris D. R. (1996). Burning radionuclide question: What happens to iodine, cesium and chlorine in biomass fires. Sci. Total Environ., vol. 187, pp. 93–103.

19. Horrill A. D., Kennedy V. H., Paterson I. S., McGowan G. M. (1995). The effect of heather burning on the transfer of radiocaesium to smoke and the solubility of radiocaesium associated with different types of heather ash. J. Env. Rad.,
vol. 29, pp. 1–10.

20. Wotawa G., De Geer L.-E., Becker A., D’Amours R., Jean M., Servranckx R., Ungar K. (2006). Inter- and intra-continental transport of radioactive cesium released by boreal forest fires. Geophys. Res. Lett., vol. 33, p. L12806.
doi: 10.1029/2006GL026206.

21. Hollаnder W., Garger E. (Eds.) (1996). Contamination of surfaces by resuspended material. Experimental collaboration project No 1, Final report,
EUR 16527, Office for Official Publications of the European Communities, Luxembourg.

22. Final information on the radiation situation in the Exclusion zone during a fire in 05.06.2018–08.06.2018 (2018). SSE “Ecocenter”, Chornobyl, 7 p. (in Russ.)

23. WRF Portal. Earth System Research Laboratory. Available at: http://esrl.noaa.gov/gsd/wrfportal.

24. European Centre for Medium-Range Weather Forecasts (ECMWF). Available at: http://apps.ecmwf.int/datasets/data/era40-daily/levtype=pl.

25. Bogorad V., Bielov Y., Kyrylenko Y., Lytvynska T., Poludnenko V., Slepchenko O. (2018). Forecast of the consequences of a fire in the Chernobyl exclusion zone:
a combination of the hardware of the mobile laboratory RanidSONNI and computer technologies DSS RODOS. Nuclear and Radiation Safety,
vol. 79, no. 3, pp. 10–15. (in Russ.)

Full Text (PDF)


If the article is accepted for publication in the journal «Industrial Heat Engineering» the author must sign an agreement on transfer of copyright. The agreement is sent to the postal (original) or e-mail address (scanned copy) of the journal editions.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a  Creative Commons Attribution License International CC-BY that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.

Insert math as
Additional settings
Formula color
Text color
Type math using LaTeX
Nothing to preview