Retrospective Analysis of the Annual Deposition Velocity of 137Cs after the Fallout of the Chornobyl Accident

А. М. Novikov

Institute for Safety Problems of Nuclear Power Plants, NAS of Ukraine, 12, Lysogirska st., Kyiv, Ukraine



The radioactive aerosol deposition velocity is a very important parameter for calculation of radioactive fallout transportation. The idea concerning the existence of interdependence between the volume activity and the depositional fluxes allows evaluating quickly the deposition velocity on the grounds of the experimental data. At the same time in accordance with the experimental measurement data a considerable fluctuation of the dry deposition velocity (more than three orders of magnitude) is observed.
In this review the assessment of the average annual total deposition (dry and wet) velocity of 137Cs was carried out on the basis of the analysed and systematised archive experimental data on volume activity and deposition fluxes that was accumulated during monitoring, research and practical work on investigation and liquidation of the consequences of the Chornobyl accident. Moreover, the results of the correlation analysis are given, which to some extent gives a possibility not only to reveal the regularities pertinent to respective processes, but also to complement and extend the existenting knowledge concerning the improvement of the deposition velocity assessment with the help of the experimental data.
From the analyzed experimental data on the measurements obtained after the Chornobyl accident, it appears that there is generally a strong positive correlation between the average annual volume activity values and the 137Cs fallout flux density. This, to a certain extent, makes it possible to further confirm the validity of the experimental measurements taken and to estimate the deposition rate of radioactive aerosols using the ratio between the volume activity and depositional fluxes.
The declining trends in annual average values of the total deposition rate for Kyiv and Chornobyl and the negative correlation between time and Vtotal may indicate a general trend towards a decrease in the aerodynamic size of aerosol particles — 137Cs carriers. According to the results of measurements in Kyiv, the dependence of the rate of total deposition of 137Cs on time can be approximated by a function y (t) = 36 11 e~. Several times higher values of the general deposition rate in Kyiv compared to Chornobyl in the years following the accident and the gradual decrease and equalization of values in the future may indicate a significant role of anthropogenic activity in the years following the accident.
A positive correlation between the rate of total (as well as wet) deposition and volume activity is observed. At the same time, there is no correlation between the rate of dry deposition and the volume activity, and the Pearson correlation coefficient is negative. The explanation to this may be that the contribution to the annual values of the total deposition was mainly determined by wet deposition (~82 %, and only ~18 % by dry deposition, according to measurements in Greece, 1987-1993).
Overall, the estimated values of total velocity as well as the dry deposition are close to those obtained in independent studies (1-30 cm/s and 0,14-1,45 cm/s, respectively).

Keywords: total, wet and dry deposition velocity, volume activity, deposition fluxes, Chornobyl accident, 137Cs.


1. Izrael Yu. A. (2006). Radioaktivnoe zagryaznenie prirodnykh sred v rezul’tate avarii na Chernobyl’skoy atomnoy stantsii [Radioactive pollution of the environment as a result of the accident at the Chornobyl nuclear power plant]. Moscow: Komtekhprint, 28 p. (in Russ.)

2. Talerko N. N., Garger E. K. (2006). Otsenki pervichnogo vybrosa iz avariynogo bloka ChAES s pomoshch’yu mod-elirovaniya atmosfernogo perenosa (obzor). [Estimates of the primary release from the Chornobyl emergency unit using atmospheric transport modeling (overview)]. Problemy bezpeky atomnykh elektrostantsii i Chornobylia [Problems of Nuclear Power Plants’ Safety and of Chornobyl], vol. 5, pp. 80-90. (in Russ.)

3. Garger E. K. (2008). Vtorichnyypodem radioaktivnogo aero-zolya vprizemnom sloe atmosfery [Secondary rise of radioactive aerosol in the surface layer of the atmosphere]. Chornobyl: ISP NPP, NAS of Ukraine, 192 p. (in Russ.)

4. Ogorodnikov B. I., Pavlyuchenko N. I., Pazukhin E. M. (2004). Radioaktivnye aerozoli obekta “Ukrytie” (obzor). Ch. 2.2: Kontsentratsii radioaktivnykh aerozoley na promplosh-chadke obekta “Ukrytie” [Radioactive aerosols of the Shelter object (overview). Part 2.2: Concentrations of radioactive aerosols at the industrial site of Shelter object]. Chornobyl, 44 p. (in Russ.)

5. Ogorodnikov B. I., Pazukhin E. M., Klyuchnikov A. A. (2008). Radioaktivnye aerozoli obekta “Ukrytie”: 1986-2006 gg. [Radioactive aerosols of the Shelter object: 1986-2006]. Chornobyl: ISP NPP, NAS of Ukraine, 456 p. (in Russ.)

6. Garger E. K., Kashpur V. O., Skoryak G. G., Shinkarenko V. K. (2014). Fiziko-khimicheskie kharakteristiki aerozolya 30-ki-lometrovoy zony ChAES v 1986-2013 gg. [Physico-chemical characteristics of the aerosol of the 30-km zone of the Chernobyl NPP in 1986-2013]. Problemy bezpeky atomnykh elektrostantsii i Chornobylia [Problems of Nuclear Power Plants’ Safety and of Chornobyl], vol. 23, pp. 54-65. (in Russ.)

7. NRBU-97, DGN6.6.1.-6.5.001-98. Norms of radiation safety of Ukraine. State Hygiene Standards. Approved by the decision of the Chief State Sanitary Doctor of Ukraine dated 01.12.1997, no. 62, 127 p. (in Ukr.)

8. Shinkarenko V. K., Kashpur V. A., Skoryak G. G., Kalinovskiy A. K. (2016). Otsenka aerozol’noy radiatsionnoy obsta-novki na promploshchadke ChAES vo vremya provedeniya rabot po stroitel’stvu novogo bezopasnogo konfaynmenta [Assessment of aerosol radiation situation on ChNPP industrial site during work on construction a New safe confinement]. Problemy bezpeky atomnykh elektrostantsii i Chornobylia [Problems of Nuclear Power Plants’ Safety and of Chornobyl], vol. 27, pp. 58-66. (in Russ.)

9. Fowler D. (1984). Transfer to terrestrial surfaces. Phil. Trans. R. Soc. Lond., B305, pp. 281-297.

10. Cambray, R. S., Cawse, P. A., Garland, J. A., Gibson, J. A, B., Johnson, P.. Lewis, G. N. J., Newton, D., Salmon, L. & Wade. B. O. (1987). Observations on radioactivity from the Chernobyl accident. Nucl. Enemy, vol. 26, pp. 77-101.

11. Nicholson, K, W. (1989). The deposition, resuspension and weathering of Chernobyl-derived material in the UK. J. Radiol. Prot., vol. 9, pp. 113-119.

12. Papastefanou C., Iounnidou A., Stoulos S., Manolopou-lou M. (1995). Atmospheric deposition of cosmogenic Be-7 and Cs-137 form fallout of the Chernobyl accident. Sci. Total. Environ, vol. 170, pp. 151-156.

13. Garger E. K. (2018). Skorost sukhogo osazhdeniya radioak-tivnykh veshchestv chernobylskogo proiskhozhdeniya po dannym nablyudeniy [The dry deposition rate of radioactive substances of Chernobyl origin according to observations]. Problemy bezpeky atomnykh elektrostantsii i Chornobylia [Problems of Nuclear Power Plants’ Safety and of Chornobyl], vol. 31, pp. 85-103. (in Russ.)

14. Mohan S. M. (2016). An overview of particulate dry deposition: measuring methods, deposition velocity and controlling factors. Int. J. Environ. Sci. Technol., vol. 13, pp. 387-402. Doi: 10.1007/s13762-015-0898-7.

15. Evaluation of long range atmospheric transport models using environmental radioactivity data from the Chernobyl accident: The ATMES Report. Comission of the European Communities, 1992, 366 p.

16. Barrie L. A., Schemenauer R. S. (1986). Pollutant wet deposition mechanisms in precipitation and fog water. Water, Air, and Soil Pollution, vol. 30, no. 1-2, pp. 91-104.

17. Sportisse B. (2007). A review of parameterizations for modelling dry deposition and scavenging of radionuclides. Atmospheric Environment, vol. 41, no. 13, pp. 2683-2698.

18. Evstigneev V. P., Evstigneev M. P., Kul’bida N. I., Naumova V. A., Shven’ N. I. (2013). Ispolzovanie sovremennykh informatsionnykh tekhnologiy pri sozdanii bazy mete-orologicheskikh dannykh Ukrainy [The use of modern information technology in creating a meteorological database of Ukraine]. Naukovipratsi Ukrainskoho naukovo-doslidnoho hidrometeorolohichnoho instytutu [Scientific works of the Ukrainian Hydrometeorological Research Institute], vol. 264, pp. 81-90. Available at: http://nbuv. (in Russ.)

19. Lev T. D., Tishchenko O. G., Piskun V. N. (2011). Informatsionno-analiticheskoe i kartograficheskoe obespechenie sistem avariynogo reagirovaniya AES. [Information-analytical and cartographical support for emergency response system of Nuclear Power Plant]. Problemy bezpeky atomnykh elektrostantsii i Chornobylia [Problems of Nuclear Power Plants’ Safety and of Chor-nobyl], vol. 16, pp. 17-26. (in Russ.)

20. Novikov A. M. (2019). Retrospektyvnyi analiz danykh vymir-iuvan shvydkosti osadzhennia Cs-137 pislia chornobylskoi avarii [Retrospective analysis of Cs-137 deposition rate measurements after the Chornobyl accident]. Proceedings of the XXVI Annual Scientific Conference of the Institute of Nuclear Sciences of the NAS of Ukraine (Kyiv, April 8-12, 2019), pp. 183-184. Available at: (in Ukr.)

21. Novikov A. M. (2019). Zastosuvannia informatsiino-poshukovykh system dlia zabezpechennia naukovykh robit arkhivnymy meteorolohichnymy danymy [Application of information retrieval systems for providing scientific works with archival meteorological data]. Proceedings of the III International Scientific and Technical Conference “Computer and Informational Systems and Technologies” (Kharkiv, April 23-24, 2019), pp. 25-26. Available at: (in Ukr.)

22. Chupov A. V. (2002). Vidtvorennia inhaliatsiinykh doz oprom-inennia pislia avarii na ChAES v 30-km zoni [Reproduction of inhalation doses after the Chornobyl accident in the 30 km zone] (PhD Thesis). Chornobyl, 19 p. (in Ukr.)

23. Talerko N. N. (2005). Kompleks modeley dlya otsenki pos-ledstviy atmosfernykh vybrosov iz AES v usloviyakh neod-norodnykh i nestatsionarnykh poley aktivnosti radionuk-lidov v vozdukhe [The set of models for the assessment of consequences of atmospheric releases from nuclear power plants in inhomogeneous and time-dependent fields of nuclide volume activity]. Problemy bezpeky atomnykh elektro-stantsii i Chornobylia [Problems of Nuclear Power Plants’ Safety and of Chornobyl], vol. 2, pp. 8-16. (in Ukr.)

24. Talerko N. N. (2009). Fizicheskie osobennosti i ogranicheni-ya modeley atmosfernogo perenosa radionuklidov dlya ra-znykh prostranstvenno-vremennykh masshtabov [Physical features and limitations of atmospheric transport models of radionuclides for different spatio-temporal scales]. Problemy bezpeky atomnykh elektrostantsii i Chornobylia [Problems of Nuclear Power Plants’ Safety and of Chornobyl], vol. 11, pp. 57-62. (in Russ.)

25. Talerko N. N. (2010). Vosstanovlenie parametrov Cher-nobylskogo vybrosa po izmereniyam moshchnosti ekspozit-sionnoy dozy v g. Pripyat [Reconstruction of Chernobyl source parameters using gamma dose rate measurements in town Pripjat]. Yadernaya fizika i energetika [Nuclear Physics and Energy], vol. 11, no. 2, pp. 169-177. (in Russ.)

26. EPA, 2003. Guidelines on Air Quality Models. CFR, Part 51, Title 40, Appendix W. Available at:

27. Leelossy A., Molnar F., Izsak F., Havasi A., Lagzi I., Mészaros R. (2014). Dispersion modeling of air pollutants in the atmosphere: a review. Cent. Eur. J. Geos-ci., vol. 6, no. 3, pp. 257-278.

28. Giaiotti D., Oshurok D., Skrynyk O. (2018). The Chernobyl nuclear accident Cs-137 cumulative depositions simulated by means of the CALMET/CALPUFF modelling system. Atmospheric Pollution Research, vol. 9, no. 3, pp. 502-512.

29. David F. (1938). Tables of the ordinates and probability integral of the distribution of the correlation coefficient in small samples. Cambridge: Cambridge University Press, 112 p.

30. Grzhibovskiy A. M. (2017). Korrelyatsionnyy analiz danny-kh s ispolzovaniem programmnogo obespecheniya Statistica i SPSS [Correlation data analysis using Statistica and SPSS software]. Nauka i Zdravookhranenie [Science and Health], vol. 1. (in Russ.)

31. Pires do Rio M. A., Amaral E. C. S., Paretzke H. G. (1994). The resuspension and redeposition of Cs-137 in an urban area: The experience after the Goiânia accident. Journal of Aerosol Science, vol. 25, no. 5, pp. 821-831.

32. Rosner G., Hotzl H., Winkler R. (1990). Effect of dry deposition, washout and resuspension on radionuclide ratios after the Chernobyl accident. The Science Total Environment, vol. 90, pp. 1-12.

33. Aoyama M., Hirose K. (1991). Particle size dependent dry deposition velocity of the Chernobyl Radioactivity. Proceedings of the У International Conference Precipitation Scavenging and Atmosphere-Surface Exchange (S. E. Schwartz, et al.). (Richland, Washington, July 15-19, 1991). Hemisphere Publishing, Washington DC, vol. 3, pp. 1581-1593.

Full Text (PDF)


If the article is accepted for publication in the journal «Industrial Heat Engineering» the author must sign an agreement on transfer of copyright. The agreement is sent to the postal (original) or e-mail address (scanned copy) of the journal editions.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a  Creative Commons Attribution License International CC-BY that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.

Insert math as
Additional settings
Formula color
Text color
Type math using LaTeX
Nothing to preview