Problem Issues of Cores Thermal-Hydraulic Calculation for Prospective Water-Cooled Reactors with Supercritical Parameters

І. G. Sharaevsky, N. М. Fіаlkо, А. V. Nоsоvskyi,
L. B. Zimin, Т. S. Vlasenko, G. І. Sharaevsky

Institute for Safety Problems of Nuclear Power Plants,
NAS of Ukraine, 12, Lysogirska st., Kyiv, 03028, Ukraine



The fundamental thermophysical features of the heat exchange process between the heated wall of a vertical channel and the light-water coolant of supercritical parameters concerning the conditions of heat-generating assemblies channels and cores of perspective energy nuclear reactors are considered. The available methods and recommendations for determining the limits of thermal load are analyzed. It is a guarantee the absence of the characteristic dangerous mode possibility of deteriorated heat exchange in these conditions and corresponding sharp rise in the channels wall temperature, which threatens their destruction. The physical nature of the occurrence of degraded heat transfer regimes remains unclear, and the existing approaches to the implementation of thermohydraulic calculation in such conditions are not sufficiently justified. The complex nature of intercellular heat and mass transfer in the fuel assembly and the presence of individual thermohydraulic cells with reduced levels of heat transfer intensity indicate that the existing method of determining the area of degraded heat transfer in the reactor core channels with supercritical parameters of the coolant is significantly simplified. Insufficient data and research results have been revealed to create adequate methods of heat-hydraulic calculation, suitable for taking into account the peculiarities of the heat transfer process complex flow under conditions of supercritical parameters of the coolant. The application of such methods should be the basis for ensuring the safe operation of prospective reactors and minimizing potential losses of a different nature from accidents caused by the destruction of cores through unacceptable heat transfer modes. To this end, the main direction of further research is identified.

Keywords: light-water nuclear reactor, supercritical parameters, fuel assembly, deteriorated heat exchange, channel wall temperature, heat load.


1. Sharaevsky І. G., Fіаlkо N. М., Nоsоvskyi А. V., Zimin L. B., Vlasenko Т. S., Sharaevsky G. І. (2020). [World trends of construction development of water-cooled supercritical pressure reactors]. Yaderna enerhetyka ta dovkillia [Nuclear power and the environment], vol. 17, no. 2, pp. 3−15.–8253.20.2.1 (in Ukr).

2. Sharaevsky І. G., Fіаlkо N. М., Nоsоvskyi А. V., Zimin L. B., Vlasenko Т. S., Sharaevsky G. І. (2020). [Main Directions of Russian Developments of Prospective Structures of Water–Cooled Supercritical Pressure Reactors]. Yaderna enerhetyka ta dovkillia [Nuclear power and the environment], vol. 18, no. 3, pp. 34−41.–8253.20.3.4 (in Ukr.).

3. Petukhov B. S., Genin L. G., Kovalev S. А. (1986). Teploobmen v yadernykh energeticheskikh ustanovkakh [Heat exchange in NPP]. Moscow: Energoaomizdat, 472 p. (In Russ)

4. Gabaraev B. А., Smolin V. N., Solov’ev S. L. (2006) [A promising direction for the development of water–cooled nuclear power reactors in the 21st century — use
of supercritical fluid parameters]. Teploenergetika [Heat power engineering], vol. 9, pp. 33−40. (in Russ.)

5. Silin V. А., Semchekov Yu. М., Аlekseev P. P., Мit’kin V. V. (2010). [Investigation of heat transfer and hydraulic resistance during supercritical water flow as applied to reactor facilities]. Аtomaya energiya [Atomic energy], vol. 108, no. 6, pp. 340−347. (in Russ.)

6. Petukhov B. S., Kurganov V. А., Аnkudinov V. B. (1983). [Heat transfer and hydraulic resistance in pipes with turbulent fluid flow near-critical state parameters]. Тeplophizika vysokikh tempertur [Thermal physics of high temperatures], vol. 21, no. 1, pp. 92−111. (in Russ.)

7. Petukhov B. S., Polyakov А. S., Rosnovsky S. V. (1976). [A new approach to calculating heat transfer at supercritical coolant pressures]. Тeplophizika vysokikh tempertur [Thermal physics of high temperatures], vol.15, no. 6, pp. 1326−1334. (in Russ.)

8. Kovetskaya М. М., Kondrat’eva Е. А., Kovetskaya Yu. Yu., Kravchuk А. V., Skitsko А. I., Sorokina Т. V. (2016). [Modes of degraded heat transfer during supercritical pressure water flow in channels with rod bundles]. Yaderna enerhetyka ta dovkillia [Nuclear power and the environment], vol. 7, no. 1, pp. 26−32. (in Russ.)

9. Grabezhnaya V. А., Kirillov P. L. (2006). [Heat transfer at supercritical pressures and the limits of heat transfer degradation]. Teploenergetika [Heat power engineering], vol. 4, pp. 46−51. (in Russ.)

10. Kirillov P. L., Lozhkin V. V., Smirnov А. М. (2003). The study of the degraded modes boundaries in the channels at supercritical pressures [Issledovanie granits ukhudshen‑nykh rezhimov v kanalakh pri sverkhkriticheskikh davleni‑yakh]. Preprint FEI-2988. (in Russ.)

11. Smirnov V. P., Papandin М. V., Loninov А. Ya., Vanyukova G. V., Аfonin S. Yu. (2011). [Application of CFD — code to the calculation of heat transfer in a reactor with supercritical parameters]. Аtomaya energiya [Atomic energy], vol. 111, no. 4, pp. 196−201. (in Russ.)

12. Yang X., Su G. H., Tian W., Wang J., Qiu S. (2010). Numerical study on flow and heat transfer characteristics in the rod bundle channels under super critical pressure condition. Annals of Nuclear Energy, vol. 37, pp. 1723−1734.

13. Kartashev K. V., Bogolovskaya G. P. (2012). [Conducting thermohydraulic calculations of the VVER–SKD reactor core for different coolant flow patterns under design operating conditions]. Voprosy atomnoy nauki i tekhniki. [Problems of atomic science and technology], vol. 31, pp. 71−77. (in Russ.)

14. Grabezhnaya V. А., Kirillov P. L. (2003). О raschetakh teploobmena v trubakh i puchkakh sterzhney pri techenii vody sverkhkriticheskogo davleniya [On heat transfer calculations in pipes and bundles of rods in supercritical pressure water flow]. FEI review 0297. Atominform. (in Russ.)

15. Dadyakin B. V., Popov А. S. (1977). [Heat transfer and hydraulic resistance of a close seven–rod bundle cooled by a stream of water at supercritical state parameters]. Proc. VTI, vol. 11, pp. 244−253. (in Russ.)

16. Аleksandrov А. А., Grigor’ev B. А. (1999). Таblitsy teplophyzicheskikh svojstv vody i vodianogo para [Tables of thermophysical properties of water and water vapor]. Handbook. Gos. Sluzhby standartnykh spravochnykh dannykh. ГСССД Р-776–98. Мoskow: МEI Publ. (in Russ.)

17. Shelegov А. S., Leskin S. Т., Chusov I. А., Slobodchuk V. I. (2010). Eksperimental’noe issledovanie teploobmena v puchke iz semi sterzhney pri sverkhkriticheskikh parametrakh freona‑12 [An experimental study of heat transfer in a beam of seven rods with supercritical parameters of Freon-12]. Preprint SАТE-001–2010. Оbninsk. (in Russ.)

18. Kirillov P. L., Baranaev Yu. D., Glebov А. P., Klushin А. V. (2011). Rеаktor, okhlazhdaemyj vodoy sverkhkriticheskogo davleniya, VVER-SKD — osnjvnoj pretendent v “Super-VVER” [The reactor cooled by supercritical water, VVER–SKD is the main contender in Super-VVER]. Proceedings of the 7th Int. Conf. “Ensuring the safety of NPPs with WWER” (Podolsk, Russia). Podolsk: Gidropress. (in Russ.)

19. Маkhin V. М., Vasil’chenko I. N., V’yalitsyn V. V., Kushmanov S. А., Kurakin K., Churkin А. N., Lapin А. V., Semiglazov S. V. (2011). Kоncepcia аktivnykh zon VVERSKD: usloviya ekspluaciyi tvelov, konstrukciya ТVS i kandidatnye materialy [VVER SKD active zones concept: fuel rod operating conditions, fuel assembly design and candidate materials]. Proceedings of the 7th Int. Conf. “Ensuring the safety of NPPs with WWER” (Podolsk, Russia). Podolsk: Gidropress. (in Russ.)

20. Churkin А. N., Yagov P. V., Моkhova О. V. (2011). Теplogiravlika odnozakhodnoy аktivnoy zony VVER–SKD. Gidroprofilirovfnie i ustoichivost’ [Thermohydraulics of a single–run core of VVER–SKD. Hydroprofiling and stability.]. Proceedings of the 7th Int. Conf. “Ensuring the safety of NPPs with WWER” (Podolsk, Russia). Podolsk: Gidropress. (in Russ.)

Full Text(PDF)


If the article is accepted for publication in the journal «Industrial Heat Engineering» the author must sign an agreement on transfer of copyright. The agreement is sent to the postal (original) or e-mail address (scanned copy) of the journal editions.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a  Creative Commons Attribution License International CC-BY that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.

Insert math as
Additional settings
Formula color
Text color
Type math using LaTeX
Nothing to preview