To a Burst of 137Cs Activity in the Air under the “Arch” Object on October 17, 2019

V. K. Shynkarenko, V. A. Kashpur, G. G. Skorjak ,
P. V. Sabenin

Institute for Safety Problems of Nuclear Power Plants,
NAS of Ukraine, 12, Lysogirska st., Kyiv, 03028, Ukraine

DOI: doi.org/10.31717/2311-8253.21.2.11

Abstract

The construction of a New Safe Confinement (NSC) is one of the main stages in the transformation of the Chornobyl nuclear power plant 4th power unit into an ecologically safe system. On the one hand, this system is designed to ensure the safety of personnel, the population and the environment, on the other — to allow safe work with the remnants of the unit. At the same time, the project allows quite high levels of bulk activity of radioactive aerosols inside the NSC — up to 210 Bq/m3 for total β-activity. The sharp increase in the volumetric air activity, observed on October 17–19, 2019 in a number of rooms of the Shelter object and in the space under the “Arch” object in the absence of a burst of activity outside these objects, can be considered as a successful kind of spontaneous test of the NSC isolation systems. The chronology of the dynamics of volume activity according to the act of official investigation of the precedent is given. The results of studies of aerosol filters exposed in the near zone of the Chornobyl NPP before and after the burst of activity in the air under the “Arсh” object are presented. Autoradiograms of fragments of these filters demonstrate a significant (≈2 orders of magnitude) increase in the number of hot particles immediately after the fall of the concrete fragment of the floor in the room 402/3. The analysis of features of the hot particles after the collapse indicates a significant contribution to the total activity of a large number of low-activity particles (0.005÷5 Bq), and the low 137Cs/241Am ratio that indicates their fuel nature. Based on the assumption about the fuel nature of hot particles, their minimum possible aerodynamic diameters were calculated, which are in the range 2.91<d<36.7 μm, which does not exclude the presence of smaller hot particles on the filter that are not visible using this method. The contribution of particles with aerodynamic diameters less than 10 μm, determined using the impactor, did not exceed 20% of the total beta activity of the aerosol.

Keywords: Shelter object, hot particles, autoradiography, specific air activity.

References

1. Garger E. K., Kashpur V. A., Skorjak G. G., Shynkarenko V. K. (2014). Fiziko-himicheskie harakteristiki aerozolya 30-kilometrovoi zony ChAES v 1986–2013 gg. [Physical and chemical characteristics of the aerosol of the 30 km zone of ChNPP in 1986–2013]. Problemy bezpeky atomnyh elektrostantsiy i Chornobylya [Problems of nuclear power plants safety and of Chornobyl], vol. 23, pp. 54–64. (in Ukr.)

2. Ogorodnikov B. I., Pazukhin E. M., Kliuchnykov A. A. (2008). Radioaktivnye aerozoli obekta “Ukrytie”: 1986–2006 gg. [Radioactive aerosols of the Shelter object: 1986–2006]. Chornobyl: ISP NPP NAS of Ukraine, 456 p. (in Russ.)

3. Ogorodnikov B. I. (2018). Sostav i svoistva radioaktivnyh aerozolei obiekta “Ukrytie” Chernobyl’skoi AES: 2000–2015 gg. [Composition of Radioactive Aerosols in the Shelter Construction of the Chernobyl Nuclear Power Plant in 2000–2015]. Zhurnal fizicheskoj himii [Russian Journal of Physical Chemistry], vol. 92, no 6, pp. 1006–1017. (in Russ.)

4. The Law of Ukraine “On General Principles of Further Operation and Decommissioning of Chornobyl NPP and Transformation of Ruined Fourth Power Unit of This NPP into Ecologically Safe System”. Approved by Supreme Council of Ukraine, 1999, no. 4, p. 33. (in Ukr.)

5. NSC CS-1 Concept Design Safety Document. SIP-N-LI-22-A500-CDS-001. Revision 1-Appendix, 2008, 63 р.

6. Act of the official investigation of the reasons for the increase in aerosol activity in the space under the NSC on 17.10.2019. Act of the RSC no. 18/8–113, dated 11.11.2019, 8 p. (in Russ.)

7. Shynkarenko V. K., Kashpur V. A., Skorjak G. G. (2014). Rezul’taty issledovanii aerozol’nyh fil’trov, eksponirovannyh do, vo vremia i posle razrusheniya kryshi mashinnogo zala 4-go energobloka Chernobyl’skoj AEeS. [Results of studies of the aerosol filters exposed before, during and after the destruction of the roof of the machine hall of Chernobyl NPP 4-th block]. Problemy bezpeky atomnyh elektrostantsiy i Chornobylya [Problems of nuclear power plants safety and of Chornobyl], vol. 23, pp. 45–53. (in Russ.)

8. ICRP (1994). Human Respiratory Tract Model for Radiological Protection. ICRP Publication 66. Ann. ICRP 24 (1–3).

9. ICRP (1994). Dose Coefficients for Intakes of Radionuclides by Workers. ICRP Publication 68. Ann. ICRP 24 (4).

10. Arutyunian R. V., Bol’shov L. A., Borovoi A. A., Velihov E. P., Kliuchnikov A. A. (2010). Yadernoe toplivo v obiekte “Ukrytie” Chernobyl’skoi AES [Nuclear fuel in the Shelter object of the Chornobyl NPP]. Moscow: Nauka Publ., 240 p. (in Russ.)

11. Boyd G. A. (1955). Autoradiography in biology and medicine. New York: Academic Press, 414 p.

12. Shynkarenko V. K. (2008). K opredeleniiu aktivnosti “goryachih” chastits radiograficheskim metodom. [To definition of activity of hot particles by a radiographic method]. Problemy bezpeky atomnyh elektrostantsiy i Chornobylya [Problems of nuclear power plants safety and of Chornobyl], vol. 9, pp. 130–139. (in Russ.)

13. Shynkarenko V. K. (2018). K voprosu o pogreshnostyah opredeleniya β-aktivnosti goryachih chastits metodom avtoradiografii. [To problems of hot particles β-activity determination errors by the autoradiography method]. Problemy bezpeky atomnyh elektrostantsiy i Chornobylya [Problems of nuclear power plants safety and of Chornobyl], vol. 30, pp. 109–118. (in Russ.)

14. Garger E. K., Shynkarenko V. K., Kashpur V. A., Skorjak G. G., Kalinovsky A. K. (2017). Assessment of aerosol radiation environment in short-range region of ChNPP during building of the new safe confinement. Problemy bezpeky atomnyh elektrostantsiy i Chornobylya [Problems of nuclear power plants safety and of Chornobyl], vol. 29, pp. 78–84.

15. Begichev S. N., Borovoi A. A., Burlakov E. V., Gavrilov S. L., Dovbenko A. A., Levina L. A., Markushev V. M., Marchenko A. E., Stroganov A. A., Tataurov A. L. (1990). Toplivo reaktora 4-go bloka ChAES: Kratkii spravochnik. [Reactor fuel of the 4th unit of the ChNPP: A short guide]. Moscow: USSR Academy of Sciences, IAE preprint-5208/3, 23 p. (in Russ.)

16. Bogatov S. A., Borovoi A. A., Lomonosov V. V. (1990). Form and parameters of the particles of the fuel ejection in the Chernobyl reactor accident. Atomic Energy, vol. 69, no. 1, pp. 595–601.

17. Badovsky V. P., Kliuchnikov O. O., Kravchuk T. A., Melenevsky A. E., Shcherbin V. M. (2009). Issledovaniye kharakteristik aerozoley v soderzhashchikh toplivo pomeshcheniyakh obiyekta “Ukrytiye”. [Aerosol characteristic researching in basic fuel-containing premises at object “Ukryttya”]. Problemy bezpeky atomnyh elektrostantsiy i Chornobylya [Problems of nuclear power plants safety and of Chornobyl], vol. 12, pp. 103–112. (in Russ.)

18. Garger Е. K., Оdintsov А. А., Shynkarenko V. К. (2009). Otsenka stepeni rastvoreniya radioaktivnykh aerozol’nykh chastits iz obiyekta “Ukrytiye”. [Estimation of the degree of dissolution radioactive aerosol particles from Shelter object]. Problemy bezpeky atomnyh elektrostantsiy i Chornobylya [Problems of nuclear power plants safety and of Chornobyl], vol. 12, pp. 125–136. (in Russ.)

19. Garger E. K., Odintsov A. A., Shinkarenko V. K., Tschiersch J. (2013). Behaviour of “hot” aerosol particles from object “Ukryttya” in simulators of a pulmonary liquid. Problemy Bezpeky Atomnykh Elektrostantsyi i Chornobylya [Problems of nuclear power plants safety and of Chornobyl], vol. 21, pp. 43–52. (in Russ.)

Full Text(PDF)


Published
2021-09-05

If the article is accepted for publication in the journal «Industrial Heat Engineering» the author must sign an agreement on transfer of copyright. The agreement is sent to the postal (original) or e-mail address (scanned copy) of the journal editions.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a  Creative Commons Attribution License International CC-BY that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.

Insert math as
Block
Inline
Additional settings
Formula color
Text color
#333333
Type math using LaTeX
Preview
\({}\)
Nothing to preview
Insert