Comparative Assessment of the Dynamics of the Average Annual Deposition Velocity of 90Sr and 137Cs for a Long Term Period after the Chornobyl Accident for the Cities of Ukraine, Kyiv and Chornobyl

A. M. Novikov

Institute for Safety Problems of Nuclear Power Plants,
NAS of Ukraine, 12, Lysogirska st., Kyiv, 03028, Ukraine

DOI: doi.org/10.31717/2311-8253.22.1.6

Abstract

A reliable assessment of the radioactive aerosol spread is an environmental safety task of current interest and high priority. An important parameter, used to calculate the transport of radioactive fallout, is the deposition velocity of radioactive aerosol. Fluctuations in the deposition velocity, which according to experimental data are within several orders of magnitude, depend on a number of factors (including time), which requires a detailed analysis of the patterns of radioactive pollution fields formation of air and the underlying surface. In this radio- ecological study, the dynamics of the average annual values of the deposition velocity of 90Sr and 137Cs were evaluated and analyzed, based on the experimental data of the measurements of the volume activity and the depositional fluxes obtained in Ukraine for the cities of Kyiv and Chornobyl after the Chornobyl nuclear power plant accident, during 1987–2019. The deposition rates for 90Sr and 137Cs estimated over a long period of time (33 years) show different trends. The total deposition velocity of 90Sr tends to increase, while for 137Cs the deposition velocity decreases over time. This pattern is characteristic of the two studied sites (Kyiv and Chornobyl). Relevant trends in the dynamics of deposition velocity may indicate the transformation of aerosol carriers of these radionuclides, their aerodynamic and migratory capabilities. This study could be of use for an empirical parameterization of deposition velocities in air quality models.

Keywords: ecological safety, monitoring, volume activity, deposition flux, deposition velocity, Chornobyl accident, 90Sr, 137Сs

References

1. Garger E. K. (2018). [The dry deposition rate of radioactive substances of Chernobyl origin according to observations]. Problems of Nuclear Power Plants Safety and of Chornobyl, vol. 31, pp. 85–103. Available at: http://mntc.smn.com.ua/ downloads/2018_31/c85.PDF. (in Rus.)

2. Таlerko M. M., Lev Т. D., Коvalets I. V., Yatsenko Yu. V. (2020). [Modeling study of the atmospheric transport of radioactivity released into the air as a result of forest fires in the Exclusion Zone in April 2020]. Nuclear Power and the Environment, vol. 18, no. 3, pp. 86–104. Available at: http://npe.org.ua/wp-content/uploads/2020/10/18–11.pdf. (in Ukr.)

3. Tyshchenko O. G., Landin V. P. (2020). [Changes in the underlying surface and vegetation in the Chornobyl Exclusion Zone during 1986–2017]. Nuclear Power and the Envi‑ ronment, vol. 19, no. 4, pp. 75–84. Available at: http://npe. org.ua/wp-content/uploads/2021/01/4–9.pdf. (in Ukr.)

4. Garger E. K. (2008). Vtorichnyi pod’yem radioaktivnogo aerozolya v prizemnom sloe atmosfery [Secondary rise of radioactive aerosol in the surface layer of the atmosphere]. Chornobyl: ISP NPP, NAS of Ukraine, 192 p. Available at: https://www.twirpx.com/file/1457758. (in Rus.)

5. Shydlovska T. A. (2011). Medyko‑ biolohichni aspekty vplyvu ionizuyuchoyi radiatsiyi vnaslidok avariyi na ChAES. [Biomedical aspects of the influence of ionizing radiation as a result of the ChNPP accident]. Chornobyl, 215 p. (in Ukr.)

6. Akleev A. V. (ed.) (2006). Chelyabinskaya oblast’: likvidatsi‑ ya posledstviy radiatsionnykh avariy. [Chelyabinsk region: elimination of the consequences of radiation accidents]. Available at: http://elib.biblioatom.ru/text/chelyabinskaya- oblast-likvidatsiya- avariy_2006/go,6. (in Rus.)

7. Toxicological profile for Strontium. Agency for Toxic Substances and Disease Registry, 2004, 445 p. Available at: file:///C:/Users/Helga/Downloads/cdc_6550_DS1.pdf.

8. Anupama M., Ashok Kumar K., Naveena Lavanya Latha J. (2016). Role of Strontium in biological systems. European Journal of Pharmaceutical and Medical Research, vol. 12, no. 3, pp. 177–184. Available at: https://www.researchgate.net/ publication/322713485_ROLE_OF_STRONTIUM_IN_BIOLOGICAL_SYSTEMS.

9. Sources and Effects of Ionising Radiation. UNSCEAR2000 Report to the General Assembly. United Nations, New York, 2000, 659 p. Available at: https://www.unscear. org/docs/publications/2000/UNSCEAR_2000_Report_ Vol.I.pdf.

10. Nosovskyi A. V. (ed.) (2017). Institut problem bezopasnosti atomnykh elektrostantsiy NAN Ukrainy: 25 let. [Institute for Safety Problems of Nuclear Power Plants of the National Academy of Sciences of Ukraine: 25 years.]. Kyiv: ISP NPP, NAS of Ukraine, 416 p. Available at: http://www. ispnpp.kiev.ua/ru/ipb-aes-nanu-25-let. (in Rus.)

11. Shynkarenko V. K., Talerko M. M., Kashpur V. O., Skorjak G. G., Svyryd O. A. (2020). [Radioactive aerosols in the near zone of the Chornobyl Nuclear Power Plant in 2018]. Nuclear Power and the Environment, vol. 16, no. 1, pp. 57–67. doi.org/10.31717/2311-8253.20.1.7. (in Ukr.)

12. Shynkarenko V. K., Kashpur V. A., Skorjak G. G. (2019). [New Safe Confinement and radioactive aerosols in the 102 101 100 10-1 15913172125293 3 Sr90,Ch/K Time, years after the Chornobyl accident 10-1 100 101 102 Fig. 9. Dynamics of the ratio of average annual values of 90Sr between Chornobyl and Kyiv (Ch/K): ● – C, ∙▲ – F and ♦ – V near zone of ChNPP]. Nuclear Power and the Environment, vol. 13, no. 1, pp. 76–82. (in Ukr.)

13. NRBU-97, DGN6.6.1.-6.5.001–98. Norms of radiation safe‑ ty of Ukraine. State Hygiene Standards. Approved by the decision of the Chief State Sanitary Doctor of Ukraine dated 01.12.1997, no. 62, 127 p. Available at: https://zakon. rada.gov.ua/rada/show/v0062282–97#Text. (in Ukr.)

14. Shynkarenko V. K., Kashpur V. A., Skorjak G. G., Kalinovskiy A. K. (2016). [Assessment of aerosol radiation situation on ChNPP industrial site during work on construction of a New Safe Confinement]. Problems of Nuclear Power Plants Safety and of Chornobyl, vol. 27, pp. 58–66. Available at: http://www.ispnpp.kiev.ua/wp-content/uploads/2017/2016_27/c58.pdf. (in Rus.)

15. Talerko N. N. (2005). [The set of models for the assessment of consequences of atmospheric releases from nuclear power plants in inhomogeneous and time-dependent fields of nuclide volume activity]. Problems of Nuclear Power Plants Safety and of Chornobyl, vol. 2, pp. 8–16. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/128026/01-Talerko.pdf?sequence=1. (in Ukr.)

16. Talerko N. N. (2009). [Physical features and limitations of atmospheric transport models of radionuclides for different spatio- temporal scales]. Problems of Nuclear Pow‑ er Plants Safety and of Chornobyl, vol. vol. 11, pp. 57–62. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/7429/07-Talerko.pdf?sequence=1 (in Rus.)

17. Talerko N. N. (2010). [Reconstruction of Chornobyl source parameters using gamma dose rate measurements in Prypiat town]. Nuclear Physics and Atomic Energy, vol. 11, no. 2, pp. 169–177. (in Rus.)

18. Talerko N. N., Zhiginas D. V., Kuzmenko A. G. (2018). [Reconstruction of the parameters of the source of radioactive emissions from the data of radiation monitoring using the Kalman filter]. Problems of Nuclear Power Plants Safety and of Chornobyl, vol. 30, pp. 40–50. (in Rus.)

19. Hudkov I. M., Kashparov V. O., Parenyuk O. Yu. (2019). Radioekolohichnyy monitorynh [Radioecological monitoring]. Kyiv, Kherson: National University of Bioresources and Nature Management of Ukraine, 187 p. Available at: https://oldiplus.ua/downloads/monitoring.pdf (in Ukr.)

20. Novikov A. M. (2020). [Retrospective analysis of the annual deposition velocity of 137Cs after the fallout of the Chornobyl accident]. Nuclear Power and the Environment, vol. 16, no. 1, pp. 68–78. doi.org/10.31717/2311–8253.20.2.8. (in Ukr.)

21. Landin V. P., Chobotko H. M., Kuchma M. D., Raychuk L. A. (2017). [Overcoming the consequences of the Chornobyl disaster in the agrosphere of Ukraine]. Agroeco‑ logical Journal, vol. 2, pp. 67–75. Available at: http://nbuv. gov.ua/UJRN/agrog_2017_2_11. (in Ukr.)

22. Shynkarenko V. K. (2004). Otsinka kontrzakhodiv, spry‑ amovanykh na znyzhennya vmistu chornobylskoho 90Sr u silskohospodarskiy produktsiyi, za nakopychennyam stabilnoho strontsiyu pryrodnoho pokhodzhennya. Meto‑ dychni rekomendatsiyi [Evaluation of countermeasures aimed at reducing the content of Chornobyl 90Sr in agricultural products, the accumulation of stable strontium of natural origin. Guidelines]. Kyiv: IAB, 29 p. Available at: https://www.twirpx.com/file/1504835. (in Ukr.)

23. Chornobyl: Assessment of Radiological and Health Impacts. NEA, 2002, 157 p. Available at: https://www.oecd-nea. org/upload/docs/application/pdf/2022–01/3508-chernobyl_2022–01–05_11–11–9_843.pdf.

24. Garger E. K., Kashpur V. O., Skorjak G. G., Shynkarenko V. K. (2014). [Physico- chemical characteristics of the aerosol of the 30-km zone of the Chornobyl NPP in 1986–2013]. Problems of Nuclear Power Plants Safety and of Chornobyl, vol. 23, pp. 54–65. (in Rus.)

25. Nefzger M. D., Drasgow J. (1957). The needless assumption of normality in Pearson’s r. The American Psycholo‑ gist, vol. 12, pp. 623–625. Available at: https://doi.apa.org/ doiLanding?doi=10.1037 %2Fh0048216.

26. Rodgers J. L., Nicewander W. A. (1988). Thirteen ways to look at the correlation coefficient. The American Statisti‑ cian, vol. 42, no. 1, pp. 59–66. Available at: https://www. stat.berkeley.edu/~rabbee/correlation.pdf.

27. Novіkov A. M. (2019). [Application of information retrieval systems for providing scientific works with archival meteorological data]. Proceedings of the III International Scientific and Technical Conference “Computer and Infor‑ mational Systems and Technologies” (Kharkiv, April 23–24, 2019), pp. 25–26. Available at: https://nure.ua/wp-content/ uploads/workshop/csitic.2019.pdf. (in Ukr.)

28. Grzhibovskiy A. M. (2017). [Correlation data analysis using Statistica and SPSS software]. Nauka i Zdravookhranenie [Science and Health], vol. 1. Available at: https://cyberleninka.ru/article/n/korrelyatsionnyy- analiz-dannyh-sispolzovaniem- programmnogo-obespecheniya- statisticai-spss. (in Rus.)

29. Rens van de Schoot (2020). Small sample size solu‑ tions: A guide for applied researchers and practitioners. New York: Routledge, 285 p. Available at: www.twirpx. com/file/3376961.

Full Text (PDF)


Published
2022-06-30

If the article is accepted for publication in the journal «Industrial Heat Engineering» the author must sign an agreement on transfer of copyright. The agreement is sent to the postal (original) or e-mail address (scanned copy) of the journal editions.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a  Creative Commons Attribution License International CC-BY that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.

Insert math as
Block
Inline
Additional settings
Formula color
Text color
#333333
Type math using LaTeX
Preview
\({}\)
Nothing to preview
Insert