Study of Kinetics of 90Sr and 137Cs Sorption on Natural, Acid- and Alkali-Modified Clinoptilolites of Sokyrnyts’ke Deposit

B. G. Shabalin1, K. K. Yaroshenko1, I. L. Koliabina1,2

1SI «Institute of Environmental Geochemistry of NAS of Ukraine»,
34a, Palladin ave., Kyiv, 03142, Ukraine
2Institute of Geological Sciences of NAS of Ukraine,
55b, O. Honchara st., Kyiv, 01054, Ukraine



Selection and implementation of an efficient and environmentally friendly technology for decontamination of liquid radioactive waste (LRW) from Ukrainian nuclear power plants is of vital importance, since the current LRW treatment scheme has a number of significant disadvantages. One of such technologies is the sorption-sedimentary technology using natural or modified mineral sorbents, in particular zeolites, which have molecular sieve, sorption and selective properties towards radiocesium. The results of the study of natural, acid- and alkaline-modified zeolites of Sokyrnyts’ke deposit, their sorption / desorption of 90Sr and 137Cs radionuclides from model liquid radioactive waste solutions are presented in the article. The main mineral in zeolite is clinoptilolite ( ~70 ± 3 wt. %). It also contains traces of quartz and mica of ~12 and <3 %, respectively. The redistribution of exchange cations is shown to take place in the process of zeolite modification and the content of cations in the clinoptilolite lattice changes. Natural zeolite belongs to potassium-calcium-sodium clinoptilolites, sodium-modified zeolite – to sodium-potassium-calcium ones, and acid-modified zeolite – to potassium-sodium-calcium clinoptilolites. The Si/Al ratio increases in the series: natural zeolite -> sodium-modified zeolite -> acid-modified zeolite. It is found that modification of sodium clinoptilolite not only improves the thermal stability but also increases the adsorption of 90Sr and 137Cs radionuclides from model liquid radioactive waste solutions. The ion exchange isotherms show that the selectivity of sodium clinoptilolite towards these radionuclides is higher than the selectivity of natural clinoptilolite and acid modified clinoptilolite. The maximum sorption capacity of 90Sr by natural zeolite during the experiment (14 days) was 55 %, 137Cs – 90 %. The sorption capacity of 90Sr by alka-line-modified zeolite was 62.2 % and of 137Cs – 98.78 %. That by acid-modified zeolite was 18 % for 90Sr and 85 % for 137Cs. The analysis of the obtained results gives grounds to recommend zeolite from Sokyrnyts’ke deposit and its sodium forms as effective sorbents of radionuclides from liquid radioactive waste when introducing the sorption-sedimentary technology of decontamination.

Keywords: liquid radioactive waste, sorption, cesium, strontium, clinoptilolite, zeolite.


1. Law of Ukraine “On introduction of modifications to some legislative act of Ukraine concerning improvement of legislation on the questions of radioactive waste handling” no. 208-IX dated 17.11.2019. (in Ukr.)

2. Tarasevich Y. I. (1981). Prirodnye sorbenty v protsessakh ochistki vody [Nature sorbents in processes of water purification]. Kyiv: Naukova Dumka, 206 p. (in Russ.)

3. Moratis D., Christidis G. E, Perdikatsis V. (2007). Ion exchange equilibrium and structural changes in clinoptiloli-te irradiated with ^- and y-radiation: monovalent cations. The American mineralogist, vol. 92, pp. 1714-1730.

4. Milutin V. V., Gelis V. M., Penzin R. A. (1993). [Sorption-selective characteristics of inorganic sorbents and ion-exchangers in relation to cesium and strontium]. Radiochemistry, vol. 35, no. 3, pp. 76-82. (in Russ.)

5. Kuznetsov L. K. (2009). [Technologies of filtering in physicochemical processes of conditioning of water]. Bashkirian chemical journal, vol. 16, no. 2, pp. 84-92. (in Russ.)

6. Tsitsishvilli G. V., Andronikashvilli T. G., Kirov G. N. (1995). Prirodnye tseolity [Nature zeolites]. Moscow: Khimiya, 224 p. (in Russ.)

7. Minato J., Kim Y.-L., Yamada H., Watanabe Y., Tamura K., Yokoyama S., Cho S.-B., Komatsu Y., Stevens G. W. (2004). Alkali-Hydrothermal Modification of Air-Classified Korean Natural Zeolite and Their Ammonium Adsorption Behaviors. Separation science and technology, vol. 39, no. 16, pp. 3739-3751.

8. Jozefaciuk G. (2002). Effect of acid and alkali treatments on surface-charge properties of selected minerals. Clays and Clay Minerals, vol. 50, pp. 647-656.

9. Ecology-expert valuation of materials of valuation of environmental effect (OVOS) «Development and mine-engineering recultivation of Sokyrnyts’ke deposit (lot, situated between 8 and 11 section) of zeolites in Khust rayon in Transcarpathian oblast» dated 15.12.2017, 18 p. (in Ukr.)

10. Ivanova V. P., Kasatov B. K., Krasavina T. N., Rozino-va E. L. (1974). Thermal analysis of minerals and rocks. Leningrad: Nedra, 399 p. (in Russ.)

11. Powder diffraction file 2003. PDF-2, Database, Sef. 1-89.

12. Brindley G. W., Brown G. (1980). Crystal structures of clay minerals and their X-ray identification. London: Miner. soc., 495 p.

13. Frank-Kamenetskiy V. A. (1983). Rentgenografiya os-novnykh tipovporodoobrazuyushchikh mineralov (sloistye i karkasnye silikaty) [X-ray graphy of main types of rock-forming minerals (layered and carcass silicates)]. Leningrad: Nedra, 359 p. (in Russ.)

14. Methods of definition microelements in nature objects. Moscow: MGU, 400 p.

15. Deer A., Howie R., Wise W. S., Zussman J. (2004). Rock Forming Minerals. Framework Silicates: Silica Minerals, Feldspathoids and the Zeolites. London: The Geological Society, 982 p.

16. Sobotovich E. V., Bondarenko G. M., Kononenko L. V., Dolin V. V., Sadolko I. V. (2002). Geokhimiya tekhnogen-nykh radionuklidov [Geochemistry of technogenic radionuclides]. Kyiv: Naukova dumka, 333 p. (in Russ.)

17. Poluektov N. S., Mishchenko V. T., Kononenko L. V., Beltyukova S. V. (1987). Analiticheskaya khimiya strontsiya [Analiti-cal chemistry of strontium]. Moscow: Nauka, 224 p. (in Russ.)

18. Vaughan D. E. W., Sand L. B., Mumpton F. A. (1978). Properties of Natural Zeolites. In: Natural Zeolites: Occurrence, Properties, Use. Elmsford, New York: Pergamon Press, pp. 353-371.

19. Chelishchev N. F., Berenshtein V. G., Volodin V. F. (1987). Tseolity — novyi tip mineral’nogo syr’ya [Zeolites — new type of mineral raw material]. Moscow: Nedra, 176 p. (in Russ.)

20. Yaroshenko K. K., Shabalin B. G., Koliabina I. L., Bondarenko G. M. (2019). [Sorption of 90Sr and 137Cs from the model solutions of liquid radioactive wastes by nature and modified zeolites of Sokyrnyts’ke deposit]. Geochemistry of Technogenesis, vol. 30, no. 2, pp. 308-313. (in Ukr.)

21. Lygina T. Z., Mihailova O. A., Naumkina N. I., Gubaidullina A. M., Grevtsev V. A., Suchkova G. G., Mikhailov A. A., Gordeev A. S. (2015). Rational complex of methods of investigation composition and properties of nature sorbe as basis of selection innovations technologies of processing and perspective trends with using mineral raw materials. Georesources, vol. 63, no. 4, pp. 57-61. (in Russ.)

22. Wilson M. J. (1994). Clay Mineralogy. New York: Chap-mann and Hall, 95 p.

23. Nakamato K. (1981). Infra-red spectra of inorganic and coordination compounds. New York: Wiley, 411 p.

24. Pushkareva E. K., Savchenko E. V. (2017). [Investigation of mechanism of impregnation concrete by damp-proof solutions with infiltrative properties]. Zbhnyk naukovykh
prats UkrDUZT, vol. 169, pp. 95-103.

25. Puzyrnaya L. N., Pshinko G. K. (2012). [Immobilization radioactive salts of still liquor in ceramic matrixes]. Kh-imiya i tekhnologiya vody [Chemistry and technology of water], vol. 34, no. 1, pp. 84-97.

26. Fedorenko Y. G., Rozko A. M., Shabalin B. G. (2013). [Sorption of salts imitate of trap waters of Atomic power plants by clay-polymer nanocomposites with extender]. Poshukova ta ekologkhna geokhіmіya [Searching and ecological geochemistry], vol. 13, no. 1, pp. 9-13.

Full Text (PDF)


If the article is accepted for publication in the journal «Industrial Heat Engineering» the author must sign an agreement on transfer of copyright. The agreement is sent to the postal (original) or e-mail address (scanned copy) of the journal editions.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a  Creative Commons Attribution License International CC-BY that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.

Insert math as
Additional settings
Formula color
Text color
Type math using LaTeX
Nothing to preview