Features of Cartographic Information Creation for Solving the Problems of Assessment and Forecast of Radioecological Situation

T. D. Lev, O. G. Tishchenko, V. N. Piskun

Institute for Safety Problems of Nuclear Power Plants, NAS of Ukraine,
12, Lysogirska st., Kyiv, 03028, Ukraine

DOI: doi.org/10.31717/2311-8253.20.1.8


Depending on the scale of the tasks that must be performed when assessing and predicting the radioecological situation and the level of decision-making on environmental and rehabilitation measures, various options are proposed for creating digital cartographic information. Three spatial levels are considered: state, regional and local. When creating cartographic layers, the methodologies of landscape-basin and radioecological zoning of the territory are used. The geographical features of the territory, the radioecological characteristics of landscapes, soils, vegetation and the updating of this information according to remote sensing data are taken into account. The collected material on radioecological studies of the territory of radioactive contamination of Ukraine after the global accident at the Chornobyl nuclear power plant was used, analyzed and implemented in our research. New possibilities of using cartographic material to solve the spatial problems of radioecological research were studied and proposed. Cartographic data on the properties of the underlying surface: roughness parameter, type of underlying surface, type of vegetation, terrain height, land use structure and other data are agreed upon after an expert assessment. The prepared maps and attributive information about the natural and environmental characteristics of the territory are used to assess and predict the radioecological situation at different stages of the development of a radiation accident using a complex of numerical and physico-statistical models developed at the Institute for Safety Problems of Nuclear Power Plants, NAS of Ukraine (atmospheric transport models and models for calculating aerial and root vegetation contamination). A methodology is proposed for constructing basic and thematic cartographic layers using two methods (for ordinary network cells and typological objects) at three spatial levels using modern geographical information systems (ArcGIS, MapInfo) and remote sensing data, taking into account the requirements of models. Radioecological zoning is carried out and the degree of criticality or vulnerability of the territories of possible radioactive contamination is assessed.

Keywords: cartography, radioecological situation, criticality of the territory, zoning, typological objects, remote sensing, GIS procedures.


1. Prister B. S., Klyuchnikov A. A., Shestopalov V. M., Kukhar’ V. P. (2013). Problemy bezopasnosti atomnoy energetiki. Uroki Chernobylya [Safety issues of nuclear energy. Lessons from Chernobyl]. Chornobyl, 200 p. (in Russ.)

2. Makhon’ko K. P. (ed.) (1990). Rukovodstvo po organizatsii kontrolya sostoyaniya prirodnoy sredy v rayone raspolozheniya AES [Guide on the organization of environmental monitoring in the area ofthe NPP location]. In: Metodicheskie rekomendatsii po provedeniyu kompleksnogo (radioekologicheskogo, khimicheskogo) monitoringa pochv i landshaftov v okrestnostyakh AES [Methodological recommendations for conducting comprehensive (radioecological, chemical) monitoring of soils and landscapes in the vicinity of the NPP]. Leningrad: Gidrometeoizdat, pp. 239-249 p. (in Russ.)

3. Prister B. S., Garger E. K, Talerko N. N., Vinogradskaya V. D., Lev T. D. (2015). [Radioecological zoning and model territory for the purposes of monitoring agrosphere after a serious accident at the nuclear power plant]. Problemy bezpeky atomnykh elektrostantsii i Chornobylia [Problems of nuclear power plants safety and of Chornobyl], vol. 25, pp. 54-65 (in Russ.)

4. Vodna ramkova dyrektyva JeS2000/60/ES: Osnovni terminy ta jikh vyznachennja [EU Water Framework Directive 2000/60/EC Definitions of Main Terms]. Translated by V. Lozanskyi. Kyiv, 2006, 240 p. (in Ukr.)

5. NRBU-97 Norms of radiation safety of Ukraine. DGN6.6.1.-6.5.001-98 State Hygiene Standards. Kyiv: USGSEN, 135 p. (in Ukr.)

6. Klyuchnikov A. A., Garger E. K., Prister B. S., Lev T. D., Talerko N. N. (2010). [Problems of diagnostics and forecasting of the radiation environment of the Ukrainian NPP in the event of a communal accident]. Problemy bezpeky atomnykh elektrostantsii i Chornobylia [Problems of nuclear power plants safety and of Chornobyl], vol. 14, pp. 8-16. (in Russ.)

7. WRF-ARW. Version 3.1. Modeling System User’s Guide. User’s Guide for the NMM core of the Weather Research and Forecast (WRF) modeling system, 2008. Available at: http://www.mmm.ucar.edu/wrf/users.

8. Prister B. S. (1975). Izuchenie osobennostey zakonomernostey povedeniya produktov yadernykh vzryvov v prirodnykh protsessakh, biologicheskikh i sel’skokhozyaystvennykh tsepochkakh [The study of the features of the behavior of the products of nuclear explosions in natural processes, biological and agricultural chains]. ONIS Foundation, PA “Mayak”]. (in Russ.)

9. International Atomic Energy Agency (2011). General Safety Guide GSG-2. Criteria for use in emergency preparedness and response in the event of a nuclear or radiological emergency. Vienna: IAEA, 96 p.

10. Prister B. S. (2008). Problemy sel’skokhozyaystvennoy radioekologii i radiobiologii pri zagryaznenii okruzhayushchey sredy molodoy smes’yu produktov yadernogo deleniya [Problems of agricultural radioecology and radiobiology in environmental pollution by a young mixture of nuclear fission products]. Chornobyl, 321 p. (in Russ.)

11. Glazovskaya M. A. (2002). Geokhimicheskie osnovy tipologii i metodiki issledovaniy prirodnykh landshaftov [Geochemical fundamentals of typology and research methods of natural landscapes]. Smolensk: Oykumena, 145 p. (in Russ.)

12. Lev T. D., Prister B. S., Vynoghradska V. D., Tyshhenko O. G., Piskun V. M. (2018). Baseinovo-landshaftnyi pryntsyp otsiniuvanni stupenia radio ekolohichnoi krytychnosti terytorii Ukrainy [Basin-landscape principle in assessing the degree of radioecological criticality of the territory of Ukraine]. Ukrainskyi heohrafichnyi zhurnal [Ukrainian Geographical Journal], vol. 104, no. 4, pp. 49-58. (in Ukr.)

13. Landsat satellite imagery data. Available at: http://goto.arcgisonline.com/map/World_Imagery.

14. National Atlas of Ukraine. Electronic version. Available at: http://www.isgeo.com.ua. (in Ukr.)

15. Interactive topographic map of Ukraine 1 : 100000. Available at: http://maps.vlasenko.net. (in Ukr.)

16. Public Cadastral Map of Ukraine. Available at: http://map.land.gov.ua/kadastrova-karta. (in Ukr.)

17. Prister B. S., Vinogradskaya V. D., Lev T. D., Talerko M. M., Garger E. K., Onishi Y., Tischenko O. G. (2018). Preventive radioecological assessment of territory for optimization of monitoring and countermeasures after radiation accidents. Journal of Environmental Radioactivity, vol. 184-185, pp. 140-151.

18. Isachenko A. G. (1991). Landshaftovedenie i fiziko-geograficheskoe rayonirovanie. [Landscape science and physical-geographical zoning]. Moscow: Vyshcha Shkola, 366 p. (in Russ.)

19. Davydchuk V. S., Zarudna R. F., Mikheli S. V., Petrov M. F., Sorokina L. Yu., Tkachenko A. N. (1994). Landshafty Chernobyl’skoy zony i ikh otsenka po usloviyam migratsii radionuklidov. [Landscapes of the Chornobyl zone and their assessment according to the conditions of migration of radionuclides]. Kyiv: Naukova dumka, 112 p. (in Russ.)

20. Kohan S. S., Vostokov A. B. (2009). Dystantsiine zonduvannia Zemli. Teoretychni osnovy [Earth Remote Sensing. Theoretical foundations]. Kyiv: Vyshcha shkola. (in Ukr.)

21. Lialko V. I., Shportiuk Z. M., Sakhatskyi O. I., Sybirtseva O. M. (2006). [Classification of the Carpathian land cover using the land chlorophyll index and the red edge position according to the MERIS video spectrometer]. Kosmichna nauka i tekhnolohia. [Space science and technology], vol. 12, no. 5/6, pp. 10-14. (in Ukr.)

22. World Imagery Digital Globe ArcGIS. Available at: http://server.arcgisonline.com/arcgis/services/World_Im-agery/MapServer.

Full Text (PDF)


If the article is accepted for publication in the journal «Industrial Heat Engineering» the author must sign an agreement on transfer of copyright. The agreement is sent to the postal (original) or e-mail address (scanned copy) of the journal editions.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a  Creative Commons Attribution License International CC-BY that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.

Insert math as
Additional settings
Formula color
Text color
Type math using LaTeX
Nothing to preview