Modeling Study of the Atmospheric Transport of Radioactivity Released into the Air as a Result of Forest Fires in the Exclusion Zone in April 2020

M. M. Таlerko, Т. D. Lev, I. V. Коvalets, Yu. V. Yatsenko

Institute for Safety Problems of Nuclear Power Plants, NAS of Ukraine,
12, Lysogirska st., Kyiv, 03028, Ukraine

Institute of Mathematical Machines and Systems Problems, NAS of Ukraine,
42, Academician Glushkov ave, Kyiv, 03187, Ukraine

DOI: doi.org/10.31717/2311-8253.20.3.10

Abstract

In April 2020, the largest forest fire occurred in the Chornobyl Exclusion zone in its history. The results of modeling the atmospheric transport of radioactive aerosols raised into the atmosphere as a result of fires in forest and grass areas in the Exclusion zone, as well as in radioactively contaminated forests outside it in Kyiv and Zhytomyr regions are presented in the paper. To assess the consequences of forest fires, a set of models of lifting, atmospheric transport and deposition of radionuclides on the underlying surface LEDI, developed at the Institute for Safety Problems of Nuclear Power Plants of the National Academy of Sciences of Ukraine, was used. Calculations of the dynamics of the 137Cs activity concentration field in the surface air on a regional scale (in Ukraine) and on a local scale (within the Exclusion zone) were performed. According to the simulation results, the maximum values of the 137Cs activity in the surface air of Kyiv in some periods during April 4−20 could reach 2−4 mBq/m3, and the integral value of 137Cs activity in the air of Kyiv for the whole period was about 450 mBq⋅s/m3. The obtained results are generally consistent with the data of measurements of radioactive contamination of the nearground air in Kyiv and areas of the nuclear power plants in Ukraine. The analysis of the consistency of the simulation results with the data of measurements of the 137Cs activity concentration in the air in the Exclusion zone was performed. The main ways to improve the methodology for assessing the consequences of forest fires by modeling the atmospheric transport of radionuclides are identified.

Keywords: wildland fires, resuspension, radionuclide, atmospheric transport, modeling, air volume activity, Exclusion zone.

References

1. Fires in Ukraine in the exclusion zone around the Chernobyl power plant: Latest measurement results and assessment of environmental and health consequences. Information note no. 5. IRSN, May 5, 2020. Available at: https://www.irsn.fr/EN/newsroom/News/Pages/20200505_Fires-in-Ukrainein-the-Exclusion-Zone-around-chernobyl-latest-newsand-consequences.aspx.

2. NERIS Webinar on Chernobyl Wildfires, May 28, 2020. Available at: https://www.eu-neris.net/home/newsletters/228-neris-webinar-on-chernobyl-wildfires-28-may-2020–15–00–16–32.html.

3. Goldammer J. G., Каshparov V., Zibtsev S., Robinson S. (2015). Best practices and recommendations for wildfire suppression in contaminated areas, with focus on radioactive terrain. Global Fire Monitoring Center (GFMC). Freiburg, Basel, Кyiv, 45 p.

4. Kudin M. V. (2014). [The burning of forests of the Belarusian and Ukrainian sectors of the exclusion zone of the Chernobyl nuclear power plant]. Problemy lesovedeniya i lesovodstva [Problems of forest science and forestry], vol. 74, pp. 539−551. (in Russ.)

5. Results of the radiation situation in Kyiv related to forest fires in the Exclusion zone: SSTC NRS official website. Available at: https://sstc.ua/news/pidsumki-shodo-radiacijnoyisituaciyi-u-kiyevi-pov-yazanoyi-iz-lisovimi-pozhezhamiu-zoni-vidchuzhennya. (in Ukr.)

6. Tabachny L. Ya. (2020). [On the response of the National Hydrometeorological Service to radiation threats caused by the spread of radioactive substances in the atmosphere due to forest fires in the exclusion zone of the Chornobyl NPP and the zone of unconditional (mandatory) resettlement in the period from 9 to 13 April 2020]. The center of forecasting consequences of radiation accidents of Ukrainian Hydrometeorological Center. Available at: https://meteo.gov.ua/ua/33345/zmi/news/read/67. (in Ukr.)

7. Talerko M., Kovalets I., Hirao S., Zheleznyak M., Kyrylenko Yu., Lev T., Bogorad V., Kireev S. (2020). Radionuclide atmospheric transport after the forest fires in the Chernobyl Exclusion zone in 2015−2018: An impact of the source term parameterization and input meteorological data on modeling results. Proceedings of the EGU General Assembly 2020 (Vienna, Austria, May 3−8, 2020). DOI:10.5194/egusphere-egu2020-10066.

8. Evangeliou N., Zibtsev S., Myroniuk V., Zhurba M., Hamburger T., Stohl A., Balkanski Y., Paugam R., Mousseau T. A., Møller A. P., Kireev S. I. (2016). Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment. Sci Rep., vol. 6, p. 26062.

9. Talerko М. М., Lev Т. D., Kireev S. I., Каshpur V. О., Кuzmenko G. G. (2019). Evaluation of Radioactive Air Contamination due to a Forest Fire within the Exclusion Zone on June 5−8, 2018. Yaderna enerhetyka ta dovkillya [Nuclear Power and the Environment], vol. 14, no. 2, pp. 47−57.

10. Bogorad V., Bielov Y., Kyrylenko Y., Lytvynska T., Poludnenko V., Slepchenko O. (2018). [Forecast of the Сonsequences of a Fire in the Chornobyl Exclusion Zone: a Combination of the Hardware of the Mobile Laboratory RanidSONNI and Computer Technologies DSS RODOS]. Yaderna ta radiatsiyna bezpeka [Nuclear and Radiation Safety], vol. 79, no. 3, pp. 10−15. (in Ukr.)

11. Battye W., Battye R. (2002). Development of emissions inventory methods for wildland fire. Final report. Research Triangle Park, NC: U. S. Environmental Protection Agency, 82 p. 12. Kaufman Y. J., Justice C. O., Flynn L. P., Kendall J. D., Prins E. M., Giglio L., Ward D. E., Menzel W. P., Setzer A. W. (1998). Potential global fire monitoring from EOS-MODIS. J. Geophys. Res., vol. 103, pp. 32215−32238. Available at: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/98JD01644.

13. Ichoku C., Kaufman J. Y. (2005). A Method to Derive Smoke Emission Rates From MODIS Fire Radiative Energy Measurements. IEEE T. Geosci. Remote., vol. 43, no. 11, pp. 2636−2649.

14. Ichoku C., Martins J. V., Kaufman Y. J., Wooster M. J., Freeborn P. H., Hao W. M., Baker S., Ryan C. A., Nordgren B. L. (2008). Laboratory investigation of fire radiative energy and smoke aerosol emissions. J. Geophys. Res., vol. 113, D14S09. Available at: https://www.fs.fed.us/rm/pubs_other/rmrs_2008_ichoku_c001.pdf.

15. Wooster M. J., Roberts G., Perry G. L. W., Kaufman Y. J. (2005). Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Res., vol. 110, 24 p.

16. Kaiser J., Flemming J., Schultz M. G., Suttie M., Wooster M. J. (2009). The MACC Global Fire Assimilation System: First Emission Products (GFASv0). Technical Memorandum no. 596. Reading, UK: ECMWF, 18 p.

17. Sulla-Menashe D., Friedl M. A. (2018). User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product, 18 p. Available at: https://modis.ornl.gov/documentation/guides/MCD12_User_Guide_V6.pdf.

18. Wiedinmyer C., Akagi S. K., Yokelson R. J., Emmons L. K., Al-Saadi J. A., Orlando J. J., Soja A. J. (2011). The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geosci. Model Dev., no. 4, pp. 625−641.

19. Andreae M. O., Merlet P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochem.  Cycles., vol. 15, pp. 955−966.

20. Perevolotsky A. N. (2006). Raspredelenie 137Cs i 90Sr v lesnykh biogeotsenozakh [Distribution of 137Cs and 90Sr in forest biogeocenoses]. Gomel: RIIPE “Institute of Radiology”, 255 p. (in Russ.)

21. Sofiev M., Vankevich R., Lotjonen M., Prank M., Petukhov V., Ermakova T., Koskinen J., Kukkonen J. (2009). An operational system for the assimilation of the satellite information on wild-land fires for the needs of air quality modelling and forecasting. Atmos. Chem. Phys., no. 9, pp. 6833−6847. DOI: 10.5194/acp-9–6833–2009.

22. Kashparov V. A., Lundin S. M., Kadygrib A. M., Protsak V. P., Levtchuk S. E., Yoschenko V. I., Kashpur V. A., Talerko M. M. (2000). Forest fires in the territory contaminated as a result of the Chernobyl accident: radioactive aerosol resuspension and exposure of fire-fighters. J. Environ. Radioact., vol. 51,
pp. 281−298.

23. Rémy S., Veira A., Paugam R., Sofiev M., Kaiser J. W., Marenco F., Burton S. P., Benedetti A., Engelen R. J., Ferrare R., Hair J. W. (2017). Two global data sets of daily fire emission injection heights since 2003. Atmos. Chem. Phys., vol. 17,
pp. 2921−2942. DOI: 10.5194/acp-17–2921–2017.

24. Sofiev M., Vankevich R., Ermakova T., Hakkarainen J. (2013). Global mapping of maximum emission heights and resulting vertical profiles of wildfire emissions. Atmos. Chem. Phys., vol. 13, pp. 7039−7052.

25. Remer L. A., Kaufman Y. J., Holben B. N., Thompson A. M., McNamara D. (1998). Biomass burning aerosol size distribution and modeled optical properties. J. Geophys. Res., vol. 103 (D24), pp. 31879−31891.

26. Radke L. F., Hegg A. S., Hobbs P. V., Penner J. E. (1995). Effects of aging on smoke from a large forest fire. Atmos. Res., vol. 38, pp. 315−332.

27. Yoschenko V. I., Kashparov V. A., Protsak V. P., Lundin S. M., Levchuk S. E., Kadygrib A. M., Zvarich S. I.,  104 ISSN 2311-8253 Nuclear Power and the Environment № 3 (18) 2020 М. М. Талерко, Т. Д. Лев, І. В. Ковалець, Ю. В. Яценко Khomutinin Y. V., Maloshtan I. M., Lanshin V. P., Kovtun M. V., Tschiersch, J. (2006). Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: part I. Fire experiments. J. Environ. Radioact., vol. 86, no. 2, pp. 143−163. DOI: 10.1016/j.jenvrad.2005.08.003.

28. Garger E. K., Kashpur V. A., Skoryak G. G., Gora A. D., Kurochkin A. A., Lisnichenko V. A. (2004). [Aerosol radioactivity and disperse structure at the Chernobyl NPP during the period of forest fires]. Agroekologichnyi Jurnal [Agroecol. J.], vol. 3, pp. 6−12. (in Russ.)

29. Balabukh V. O. (2017). [The current state of forecasting the natural fire hazard by weather conditions in Ukraine]. Proceedings of the 19th All-Ukrainian scientific-practical conference “The current state of civil defense of Ukraine and prospects for development” (Kyiv, Ukraine, October 10−11, 2017). Available at: https://www.researchgate.net/publication/326301301_SUCASNIJ_STAN_PROGNOZUVANNA_PRIRODNOI_POZEZNOI_NEBEZPEKI_ZA_UMOVAMI_POGODI_V_UKRAINI. (in Ukr.)

30. Zibtsev S. V., Мyroniuk V. V. (2020). [Press release of the Regional Eastern Europe Fire Monitoring Center for fire areas in the exclusion zone, March 29 — April 16, 2020]. Available at: https://nubip.edu.ua/node/75436. (in Ukr.)

31. Protsak V. P., Voitsekhovich О. V., Laptev G. V. (2020). Assessment of the dynamics of radionuclide transport outside the exclusion zone by air during a fire April 2−20, 2020. Ukrainian Hydrometeorological Institute, 33 p. Available at: https://uhmi.org.ua/msg/fire2020/analytical.pdf. (in Ukr.)

32. Fire Information for Resource Management System (FIRMS). https://firms.modaps.eosdis.nasa.gov.

33. User’s guide for the industrial source complex (ISC3) dispersion models. Vol. 1. EPA-454/B-95-003a. Research Triangle Park, NC, U. S. Environmental Protection Agency, 1995.

Full Text(PDF)


Published
2020-09-21

If the article is accepted for publication in the journal «Industrial Heat Engineering» the author must sign an agreement on transfer of copyright. The agreement is sent to the postal (original) or e-mail address (scanned copy) of the journal editions.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a  Creative Commons Attribution License International CC-BY that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.

Insert math as
Block
Inline
Additional settings
Formula color
Text color
#333333
Type math using LaTeX
Preview
\({}\)
Nothing to preview
Insert