Destruction of Organic Matter from Radioactively Contaminated Water of Nuclear Power Plants Equipped with VVER (Analytical Review)

B. G. Shabalin1, O. M. Lavrynenko1, 2

1SI “Institute of Environmental Geochemistry of NAS of Ukraine”,
34a, Palladin ave, Kyiv, 03142, Ukraine

2Frantsevych Institute for Problems of Materials Science, NAS of Ukraine,
3, Krzhyzhanovskii st., Kyiv, 03680, Ukraine

DOI: doi.org/10.31717/2311-8253.20.3.8

Abstract

The literature review provides a critical analysis of the current experimental and practical use of oxidative methods for the destruction of organometallic complexes present in liquid radioactive waste (LRW) of nuclear power plants with water-cooled reactors. The main LRW organic complexes (containing ethylenediaminetetraacetate and oxalic acids) and methods of their oxidation by ozonation, addition of potassium permanganate and hydrogen peroxide are considered. The article outlines the results of combined oxidation (ultraviolet and ozone, supercritical oxidation in the presence of hydrogen peroxide, discharge cavitation combined with ozonation) and the processes of sediment formation (secondary waste) from the oxidative decomposition of organic compounds, which result in formation of highly dispersed amorphous Fe (oxy)hydroxide-based sediments. It is shown that ozonation is one of the most efficient methods for the destruction and removal of organic components from aqueous solutions of LRW since ozone has a higher oxidizing power compared to potassium permanganate and hydrogen peroxide. Currently, ozonation technologies are used at a number of nuclear facilities in the Russian Federation (Kursk, Kalinin and Leningrad NPPs). At the same time, the process of ozone production is highly energy-intensive and time-consuming, which is caused by its low solubility in aqueous solutions. Besides, ozone is a toxic, inflammable and explosive substance that requires special conditions during its production. Despite the fact that oxidation of LRW with potassium permanganate can reduce their activity, the process of destruction of organic complexes with this method leads to formation of significant volumes of manganese dioxide sediments (secondary waste). Also, complete oxidation of organic complexes cannot be achieved even using high concentrations of potassium permanganate. Oxidation of LRW using hydrogen peroxide has several advantages compared to other oxidative methods of water treatment — low cost, possibility to store regardless of the temperature, unlimited solubility in water, and simplicity. However, the efficiency of LRW oxidation with hydrogen peroxide is relatively low due to its selectivity for dissolved substances, which slows down the oxidation of a number of organic compounds. It is established that one of the most promising methods for the destruction of the organic components in LRW is the combined oxidation by physical methods in the presence of an additional oxidizing agent, which promotes the formation of hydroxyl radicals with a high reactivity towards oxidation.

Keywords: liquid radioactive wastes of nuclear power plants, floor drains, oxidative destruction, organometallic complexes, ozonation or ozone treatment, hydrogen peroxide, potassium permanganate.

References

1. Bliznyukova L. V. (2017). Obraschenie s radioaktivnyimi othodami [Radioactive waste management]. NNEGC “Energoatom”, 18 p. (in Russ.)

2. Kulskiy L. A., Strahov E. B., Voloshinova A. M. (1986). Tehnologiya vodoochistki na atomnyih energeticheskih ustanovkah [Water purification technology at nuclear power plants]. Kyiv: Naukova Dumka, 272 p. (in Russ.)

3. Ampelogova N. I., Simanovskiy Yu. M., Trapeznikov A. A. (1982). Dezaktivatsiya v yadernoy energetike [Decontamination in nuclear power]. Moscow: Energoatomizdat, 256 p. (in Russ.)

4. Radioactive waste management during NPP operation. Report. NNEGC «Energoatom», 2016, 137 p. (in Ukr.)

5. Nikiforov A. S., Kulichenko V. V., Zhiharev M. I. (1985). Obezvrezhivanie zhidkih radioaktivnyih othodov [Disposal of liquid radioactive waste]. Moscow: Energoizdat, 184 p. (in Russ.)

6. Ahmedzyanov V. R., Laschyonova T. N., Maksimova O. A. (2008). Obraschenie s radioaktivnyimi othodami [Radioactive waste management]. Moscow: Energiya, 284 p. (in Russ.)

7. Andronov O. B. (2015). [On the creation of a modern liquid radioactive waste management system at Ukrainian nuclear power plants. Formulation of the problem]. Problemy bezpeky atomnykh elektrostantsii i Chornobylia [Problems of Nuclear Power Plants Safety and of Chornobyl], vol. 24, pp. 32−41. (in Russ.)

8. Avezniyazov S. R., Stahiv M. R. (2018). [Experience in the treatment of LRW at Kola NPP]. Radioaktivnyie othody [Radioactive waste], vol. 5, no. 4, pp. 49−54. (in Russ.)

9. Savkin A. E., Morenova A. G., Zaharova E. V., Rodyigina N. I. (2003). [Oxidation-sorption treatment of bottoms from the Leningrad NPP from radionuclides]. Radiohimiya [Radiochemistry], vol. 45, no. 4, pp. 363−365. (in Russ.)

10. Akimov A. M., Kotelnikova S. A. (2014). [Sorption technologies for the processing of liquid radioactive waste, bottoms and salt melt]. Zbirnyk naukovyh prats SNUYaEtaP [Collection of scientific works of the Sevastopol National University of Nuclear Energy and Industry], pp. 68−76. (in Russ.)

11. Povarov V. P. (2012). [Sources of LRW formation at Novovoronezh NPP and prospects for reducing the dynamics of their accumulation]. Proceedings of the VIII Int. scientific and technical conf. “Water-chemical regime of nuclear power plants” (Moscow, October 23−25, 2012), pp. 215−224. (in Russ.)

12. Moskvin L. N., Krivobokov V. V., Andrianov A. K., Efimov A. A. (2010). [Low-waste technology for chemical decontamination of the first circuits of power plants with water coolant using ion-exchange methods for cleaning decontamination solutions]. Radiochemistry, vol. 52, no. 6, pp. 491−496. (in Russ.)

13. Lure Yu. Yu. (2007). Spravochnik po analiticheskoy himii [Handbook of Analytical Chemistry]. Moscow: Alyans, 448 p. (in Russ.)

14. Martell A. E. (1952). Chemistry of the metal chelate compounds. Englewood Cliffs, N.J.: Prentice-Hall, 613 p.

15. Martell A. E., Smith R. M. (1974). Critical stability. Vol. 3. New York: Plemum Press, 496 p.

16. Gilens O., Aykayme O. N. (2004) [Precipitation of EDTA from complex solutions of heavy metals and its regeneration]. Tehnologiya i konstruirovanie v elektronnoy apparature [Technology and Design in Electronic Equipment], no. 4, pp. 54−56. (in Russ.)

17. Ivanenko V. I., Lokshin E. P., Korneykov R. I., Marakulin I. V., Avezniyazov S. R., Petrov A. M. (2014). Sposob obrabotki radioaktivnogo rastvora [The method of processing a radioactive solution]. Patent 2514823 RF, G21F 9/06 (2006.01). (in Russ.)

18. Lokshin E. P., Ivanenko V. I., Avsaragov H. B., Kalinnikov V. T. (2005). [High salinity liquid radioactive waste decontamination]. In: Innovatsionnyi potentsial Kolskoy nauki [The innovative potential of Kola science]. Apatity: KSC RAS, pp. 160−166. (in Russ.)

19. Avramenko V. A., Voyt A. V., Dmitrieva E. E., Dobrzhanskiy V. G., Mayorov V. S., Sergienko V. I., Shmatko S. I. (2008). [Hydrothermal oxidation of Co-EDTA complexes]. Doklady AN [Reports of the Academy of Sciences], vol. 418, no. 3, pp. 1−4. (in Russ.)

20. Chandhary A. J., Donoldson J. D., Grimes S. M., Hassan M., Spencer R. J. (2000). Semultaneous recovery of heavy metals and degradation of organic species copper and ethylendiaminetetra-acetic asid (EDTA). J. Chem. Technol. and Biotechnol., vol. 75, no. 5, pp. 353−385.

21. Remi G. (1974). Kurs neorganicheskoy himii. T. 2 [Inorganic chemistry course. Vol. 2]. Moscow: Mir, pp. 315. (in Russ.)

22. Kornev V. I., Semenova M. G., Merkulov D. A. (2009) [Homogeneous and mixed ligand complexes of cobalt (II) and nickel (II) with nitrilotriacetic acid and dicarboxylic]. Koordinatsionnaya Himiya [Coordination Chemistry], vol. 35, no. 6, pp. 527−534. (in Russ.)

23. Neudachina L. K., Lakiza N. V. (2017). Himiya koordinatsionnyih soedineniy [Chemistry of coordination compounds]. Moscow: Yurayt Publ.; Ekaterinburg: Ural University Publ., 123 p. (in Russ.)

24. Seliverstov A. F., Lagunova Y. O., Ershov B. G. (2009). Recovery of radioactive cobalt from aqueous EDTA solutions using concentrated ozone. Radiochemistry, vol. 51, no. 3, pp. 326−328.

25. Lagunova Yu. O., Seliverstov A. F., Ershov B. G., Basiev A. G. (2012). [Oxidative decomposition of oxalate ions in aqueous solutions concentrated with ozone]. Atomnaya energiya [Atomic energy], vol. 113, no. 2, pp. 93−95. (in Russ.)

26. Hannem Kh., Herlyha V. A., Kravchenko V. P., Makedon V. V., Shulha O. V. (2019). [Purification of liquid radioactive waste from surfactants and organic compounds]. Yaderna ta radiatsiina bezpeka [Nuclear and Radiation Safety], vol. 1, no. 81, pp. 62−67. (in Ukr.)

27. Dobrozhanskiy V. G., Golub A. V., Avramenko V. A., Mayorov V. Yu., Sergienko V. I. (2009). [Hydrothermal technology for processing bottoms of evaporators for special water treatment of nuclear power plants]. Vestnik DVO RAN [Bulletin of Far Eastern Branch of Russian Academy of Sciences], no. 2, pp. 3−8. (in Russ.)

28. Yalovik M. S., Chechelnitskiy G. M., Kalashnikov V. G., Arzhatkin V. G., Arhipov V. P., Basiev A. G., Ershov B. G., Novikov D. O., Kamrukov A. S., Konstantinov V. E., Kozlov N. P., Lagunova Yu. O., Matveenko A. V., Malkov K. I., Seliverstov A. F., Trofimova M. O., Shashkovskij S. G. (2012−2020). Sposob ochistki zhidkih radioaktivnyih othodov [The method of purification of liquid radioactive waste]. Patent RU2560837, G21F9/00 (2006.01). (in Russ.)

29. Rudenko L. I., Dzhuzha O. V., Han V. E. (2007). [Oxidative treatment of liquid radioactive waste from organic compounds and radionuclides with potassium permanganate]. Dopovidi NAN Ukrainy [Reports of the NAS of Ukraine], no. 2, pp. 143−146. (in Russ.)

30. Venkatadri R., Peters R. W. (1993). Chemical oxidation technologies: ultraviolet light/hydrogen peroxide, fenton’s reagent, and titanium dioxide-assisted photocatalysis. Hazardous Waste & Hazardous Materials, vol. 10, no. 2, pp. 107−149.

31. Lagunova Yu. O., Seliverstov A. F., Ershov B. G., Basiev A. G., Gelis V. M. (2009). [Isolation of radioactive cobalt from EDTA solutions using concentrated ozone]. Radiohimiya [Radiochemistry], vol. 51, no. 3, pp. 286−288. (in Russ.)

32. Rabinovich V. A., Havin Z. Ya. (1977). Kratkiy himicheskiy spravochnik [A brief chemical handbook]. Moscow: Khimiya, 376 p. (in Russ.)

33. Razumovskiy S. D., Zaikov G. E. (1974). Ozon i ego reaktsii s organicheskimi soedineniyami (kinetika i mehanizm) [Ozone and its reactions with organic compounds (kinetics and mechanism)]. Moscow: Nauka, 322 p. (in Russ.)

34. Ryabchikov B. E. (2008). Ochistka zhidkih radioaktivnyih othodov [Liquid radioactive waste treatment]. Moscow: DeLi Print, 512 p. (in Russ.)

35. Omelchuk B. B., Stahiv M. P., Savkin A. E., Fedorov D. A., Kornev V. I. (2007). [Development of technology and processing of bottoms at Kola NPP]. Atomnaya energiya [Atomic Energy], no. 3, pp. 34−37. (in Russ.)

36. Wang J., Wang X., Li G. (2009). Degradation of EDTA in aqueous solution by using ozonolysis and ozonolysis combined with sonolysis. J. Hazard. Mater., vol. 176, pp. 333−338.

37. Yaroshenko K. K., Bondarenko H. M. (2012). [Optimal conditions for ozone oxidation of organic components of liquid radioactive waste]. Zbirnyk naukovykh prats Instytutu heokhimii navkolyshnoho seredovyshcha [Proceedings of the Institute of Environmental Geochemistry], vol. 21, pp. 45−51. (in Ukr.)

38. Savkin A. E. (1999). Pererabotka kubovyih ostatkov AES s ispolzovaniem selektivnyih sorbentov [Processing bottoms of nuclear power plants using selective sorbents] (PhD Thesis). Moscow, [s. n.], 24 p. (in Russ.)

39. Ershov B. G., Panich N. M., Seliverstov A. F. (2007). Rastvorimost ozona v kontsentrirovannyih vodnyih rastvorah soley [Solubility of ozone in concentrated aqueous solutions of salts]. Zhurnal prikladnoy himii [Journal of Applied Chemistry], vol. 80, no. 11, pp. 1787−1790. (in Russ.)

40. Glaze W. H., Kang J.-W., Chapin D. H. (1987). The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone: Science & Engineering, vol. 9, pp. 335−352.

41. Ku Y., Wang L., Shen Y. (1998). Decomposition of EDTA in aqueous solution by UV/H2O2 process. J. Hazard. Mater., vol. 60, pp. 41−55.

42. Lagunova Yu. O. (2011). Ispolzovanie ozona i peroksida vodoroda dlya okislitelnogo razlozheniya organicheskih kompleksonov v protsessah ochistki ZhRO [The use of ozone and hydrogen peroxide for the oxidative decomposition of organic complexones in the treatment of LRW] (PhD Dissertation). Moscow, [s. n.], 165 p. (in Russ.)

43. Garnov A. Y., Gogolev A. V., Shilov V. P. (2002). Catalytic decomposition of organic anions in alkaline radioactive waste: 1. EDTA oxidation. Radiochemistry, vol. 44, no. 5, pp. 482−488.

44. Ershov B. G., Kamrukov A. S., Kozlov N. P., Selivyorstov A. F. (2003). [New photochemical technology for processing liquid radioactive waste]. Proceedings of the VI International symposium on radiation plasma dynamics RPD-2003. Moscow: Inzhener, pp. 81−82. (in Russ.)

45. Potomov M. A. (2008). [Prospects for the application of cavitation technologies for the intensification of chemicaltechnological processes]. Vestnik TGTU [Transactions of the TSTU], vol 14, no. 4, pp. 861−869. (in Russ.)

46. Kamrukov A. S., Kozlov N. P., Novikov D. O., at al. (2015). [Combined plasma-optical method for the destruction of complexones contained in LRW]. Proceedings of the XLII International Conference on Plasma Physics and Controlled Thermonuclear Fusion (Zvenigorod, 2015). (in Russ.)

47. Plotnikov V. I., Safonov I. I. (1983). [Radiochemical study of the coprecipitation of trace amounts of some hydrolyzable elements with hydroxides and metal oxides]. Radiochemistry, no. 2, pp. 161−170. (in Russ.)

48. Egorov Yu. V. (1975). Statika sorbtsii mikrokomponentov oksigidratami [Statics of sorbents of microcomponents by oxyhydrates]. Moscow: Atomizdat, 200 p. (in Russ.) 49. Cornell R. M., Schwertmann U. (2003). The iron oxides: structure, properties, reactions, occurrence and uses. 2th ed. Wiley-VCH: Weinheim, Germany, 703 p.

50. Nikoladze G. I. (1978). Obezzhelezivanie prirodnyih i oborotnyih vod [Deferrization of natural and circulating waters]. Moscow: Stroyizdat, 160 p. (in Russ.)

51. Lavrynenko О. М. (2019). Protsesy fazoutvorennia v systemi halvanokontaktiv zalizo (St3) — vuhlets (koks) u vodnomu seredovyshchi [Processes of phase separation in a galvanic contact system of iron (St3) — carbon (coke) in an aqueous medium]. Кyiv: КІМ, 300 p. (in Ukr.)

52. Melihov I. V., Merkulova M. S. (1975). Sokristallizatsiya [Co-crystallization]. Moscow: Himiya, 280 p. (in Russ.)

53. Dai Y. Q., Dai J. M., Tang X. W., Zi Z. F., et al. (2015). Magnetism of CoFe2 O4 thin films annealed under the magnetic field. J. Magn. Magn. Mater., vol. 394, pp. 287−291.

54. Lavrynenko O. M., Shabalin B. G. (2017). Comparative study of physical-chemical properties of spinel ferrite nanoparticles formed on the steel surface in the open-air system. Nano Studies, no. 15−16, рр. 5−26.

55. Babenkov E. D. (1974). Ochistka vodyi koagulyantami [Water purification by coagulants]. Moscow: Nauka, 356 p. (in Russ.)

56. Chalyiy V. P. (1972). Gidrookisi metallov (Zakonomernosti obrazovaniya, sostav, struktura i svoystva) [Metal hydroxides (laws of formation, composition, structure and properties)]. Kyiv: Naukova dumka, 158 p. (in Russ.)

57. Kulyuhin S. A., Krasavina E. P., Rumer I. A., Gredina I. V. (2012). Sorbtsiya 60Co na sloistyih dvoynyih gidroksidah Mg, Al i Nd iz vodnyih rastvorov [60Co sorption on layered double hydroxides of Mg, Al and Nd from aqueous solutions]. Radiochemistry, vol. 54, no. 3, pp. 232−236. (in Russ.)

58. Lavrynenko O. M., Pavlenko O. Yu., Shchukin Yu. S. (2016). Characteristic of the nanoparticles formed on the carbon steel surface contacting with 3d-metal water salt solutions in the open-air system. Nanoscale Research Letters, 11:67. doi 10.1186/s11671–016–1267–2.

59. Lavrynenko O. M., Dudchenko N. O., Pavlenko O. Yu., Brik A. B. (2016). Thermal behavior and magnetic properties of the copper- and cobalt-substituted magnetite nanoparticles formed on the steel surface in the open-air system. Proceedings of the International Conference on Nanomaterials: Applications & Properties, vol. 5, no. 1, 01NNPT08.

60. Lavrynenko O. M. (2016). [Iron-containing layered double hydroxides as a basis for producing dispersed ferrishpinels]. Nano Studies, no. 13, рр. 93−116. (in Russ.)

61. Аrustamov А. E., Zinin А. V., Krasnikov P. V., Prilepo Yu. P., Perevezentsev V. V., Savkin A. Ye., Svittsov A. A., Khubetsov S. B. (2005). [The method of ion selective cleaning of liquid radioactive waste from nuclear plants]. Bezopasnost zhiznedejatelnosti [Life safety], vol. 11, pp. 13−16. (in Russ.)

Full Text(PDF)


Published
2020-09-21

If the article is accepted for publication in the journal «Industrial Heat Engineering» the author must sign an agreement on transfer of copyright. The agreement is sent to the postal (original) or e-mail address (scanned copy) of the journal editions.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a  Creative Commons Attribution License International CC-BY that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.

Insert math as
Block
Inline
Additional settings
Formula color
Text color
#333333
Type math using LaTeX
Preview
\({}\)
Nothing to preview
Insert