Actual Problems of the Thermal Hydraulic Reliability Ensuring of Prospective Nuclear Reactors with Supercritical Parameters

I. G. Sharayevsky, N. M. Fialko, A. V. Nosovskyi,
L. B. Zimin, T. S. Vlasenko, G. I. Sharayevsky

Institute for Safety Problems of Nuclear Power Plants,
NAS of Ukraine, 12, Lysogirska st., Kyiv, 03028, Ukraine



There is a significant lack of reliable information on the physical characteristics of thermohydraulic processes in emergency heat transfer modes when cooling the surface of fuel rods with light water coolant with supercritical thermodynamic parameters, in particular, on the physics of heat transfer processes and hydromechanics in the critical area. It is shown that in these conditions there is physical uncertainty about the causes of deteriorating heat transfer, which limits the possibility of creating effective calculation techniques for reliable determination of the upper limit of safe forcing of the heat transfer process in the core. At present, the vast majority of theoretical and experimental studies of thermohydraulic processes in the near-critical area have been performed only for the socalled “normal” heat transfer, which corresponds to the heat removal conditions with mixed turbulent convection of superheated to “gas” state of light water coolant in its inertial mode. Attention is paid to the possible appearance of macromolecular ensembles on this surface in the form of pseudo-vapor formations, which are capable of causing an emergency mode of pseudo-film boiling. On the basis of the given experimental data of various authors existence of rather deep physical analogy between processes of heat exchange in supercritical thermodynamic system and unheated boiling at subcritical parameters of the heat carrier is proved. Existence of the pseudo-boiling process in the conditions of supercritical thermodynamic parameters makes it impossible to use in the thermohydraulic calculation the empirical dependences for “hot” gas for the range of active zones operational parameters.

Keywords: nuclear reactor with light water coolant, supercritical parameters, impaired heat transfer, pseudoboiling of coolant, turbulent vortices, thermoacoustic oscillations, pseudo-film boiling.


1. Petukhov B. S., Genin L. G., Kovaliov S. А.; Petukhov B. S.(ed.) (1986). Teploobmen v yadernykh energeticheskikh ustanovkakh [Heat transfer in nuclear power plants]. Мoscow: Energoatomizdat, 472 p. (in Russ.)

2. Pioro I. L., Duffey R. B. (2007). Heat transfer and hydraulic resistance at supercritical pressures in power engineering applications. New York: ASME Press, 334 p.

3. Petukhov B. S., Polyakov А. F. (1986). Teploobmen pri smeshanoj turbulentnoj konvekcii [Mixed turbulent convection heat transfer]. Мoscow: Nauka, 192 p. (in Russ.)

4. Vetrov V. I. (1983). Termodinamicheskaya neustoichivost’ v kanalakh sudovykh energeticheskikh ustanovok pri sverkhkriticheskikh davleniyakh teplonositelya [Thermodynamic instability in the channels of ship power plants at supercritical coolant pressures]. (PhD Thesis). Sevastopol, 25 p. (in Russ.)

5. Kafengaus N. L. (1986). [On some features of the behavior of a liquid at supercritical pressure under conditions of intense heat transfer]. Promyshlennaya Teplotekhnika [Industrial Heat Engineering], vol. 8, no. 5, pp. 8–10. (in Russ.)

6. Petukhov B. S., Kurganov V. А., et al. (1983). An experimental study of the velocity and temperature fields during heating of a turbulent flow of carbon dioxide of supercritical pressure. Part 1. Report of the IWT of the USSR Academy of Sciences. Мoscow, 181 p. (in Russ.)

7. Popov V. N. (1986). Razrabotka metoda rascheta teploobmena i soprotivleniya pri turbulentnom techenii zhidkosti [Development of a method for calculating heat transfer and resistance in a turbulent fluid flow]. (PhD Thesis). Мoscow, 40 p. (in Russ.)

8. Razumovsky V. G., Оrnatsky А. P., Маеvsky Е. М. (1987). Теplootdacha i lokal’nye geometricheskie kharakteristiki gladkikh kanalov pri tubulentnom techenii vody sverkhkriticheskogo davleniya [Heat transfer and local geometric characteristics of smooth channels in a turbulent flow of supercritical water]. In: [Two phase flows. Heat transfer and hydrodynamics]. Leningrad: Nauka, pp. 117–128. (in Russ.)

9. Kartashov K. V., Bogoslovskayа G. P. (2012). [Conducting thermohydraulic calculations of the VVER-SKD reactor core for different coolant flow patterns under design operating conditions]. Voprosy atomnoj nauki i tekhniki [Atomic Science and Technology Issues], vol. 31, pp. 71–78. (in Russ.)

10. Тоlubinsky V. I. (1980). Теploobmen pri kipenii [Boiling heat transfer]. Kyiv: Naukova dumka, 316 p. (in Russ.)

11. Knapp K., Sabersky R. (1965). Free convection heat transfer to carbone dioxide near critical point. Int. Heat and Mass Transfer, vol. 9, no. 1, pp. 41–51.

12. Kliuchnykov А. А., Sharaevsky I. G., Fialko N. M., Zimin L. B., Sharaevskaya N. I. (2013). Teplofizika povrezhdenij reaktornykh ustanovok [Тhermophysics of nuclear reactor damages]. Chornobyl: ISP NPP, NAS of Ukraine, 528 p. (in Russ.)

13. Аlad’ev I. Т., Vas’yanov V. D., Kafengauz N. L., Lebedeva A. G., Morozov Yu. N. (1976). [An experimental study of the mechanism of pseudo-boiling in h-heptan]. Inzhenerno-fizicheskiy zhurnal [Engineering Physics Journal], vol. 31, no. 3, pp. 389–395. (in Russ.)

14. Kafengauz N. L. (1974). O mekhanizme psevdokipeniya [About the pseudo-boiling mechanism]. In: Issledovaniya po mekhanike i teploobmenu dvukhfaznykh sred [Studies on the mechanics and heat transfer of two-phase media]. Мoscow: ENIN, pp. 229–235. (in Russ.)

15. Kafengauz N. L. (1983). [Heat transfer to a turbulent fluid flow in pipes at supercritical pressures]. Inzhenernofizicheskiy zhurnal [Engineering Physics Journal], vol. 44, no. 1, pp. 14–19. (in Russ.)

16. Оrnatsky А. P. (1968). Issledovaniye zakonomernostey krizisa teploobmena i gidravlicheskogo soprotivleniya pri poverkhnostnom kipenii vody v usloviyakh vynuzhdennogo dvizheniya [Study of the laws of heat transfer crisis and hydraulic resistance during surface boiling of water in conditions of forced movement]. (PhD Thesis). Кyiv, 50 p. (in Russ.)

17. Sharaevsky І. G. (2010). Rozpiznavannya peredavariynykh teplohidravlichnykh protsesiv u vodookholodzhuvanykh yadernykh enerhetychnykh reaktorakh [Recognition of pre-emergency thermohydraulic processes in water-cooled nuclear power reactors]. (PhD Thesis). Кyiv: ІSP NPP, NAS of Ukraine, 48 p. (in Ukr.)

18. Kafengauz N. L. (1974). Obzor eksperimental’nykh dannykh po issledovaniyu termoakusticheskikh kolebanii pri teplootdache k turbulentnomu potoku zhidkosti v trubakh [Review of experimental data on the study of thermoacoustic oscillations during heat transfer to a turbulent fluid flow in pipes]. In: Voprosy teplomassoperenosa v energeticheskikh ustanovkakh [Heat and mass transfer issues in power plants]. Мoscow: ENIN, pp. 106–130. (in Russ.)

19. Аlad’ev I. Т., Dyshel’ I. N., Kafengauz N. L. (1981). [The effect of heat transfer on the speed of sound in a turbulent fluid flow]. Теplofizika vysokikh temperatur [Thermal physics of high temperatures], vol. 19, no. 5, pp. 1108–1111. (in Russ.)

Full Text(PDF)


If the article is accepted for publication in the journal «Industrial Heat Engineering» the author must sign an agreement on transfer of copyright. The agreement is sent to the postal (original) or e-mail address (scanned copy) of the journal editions.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a  Creative Commons Attribution License International CC-BY that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.

Insert math as
Additional settings
Formula color
Text color
Type math using LaTeX
Nothing to preview