C. V. Hrytsiuk1, А. M. Bozhuk2, А. V. Nosovskyi1,
V. І. Gulik1, 3
1 Institute for Safety Problems of Nuclear Power Plants,
National Academy of Sciences of Ukraine, 12, Lysogirska st.,
Kyiv, 03028, Ukraine
2 National Technical University of Ukraine “Igor Sikorsky Kyiv
Polytechnic Institute”, 37, Peremohy ave, Kyiv, 03056, Ukraine
3 Institute of Physics, University of Tartu, 1, W. Ostwaldi,
Tartu, 50411 Estonia
DOI: doi.org/10.31717/2311-8253.21.2.5
Abstract
Muon tomography is a promising detection technology that uses natural radiation, the muons of cosmic rays. In the last decade, a significant number of scientific papers have appeared that investigate the possibility of using muon tomography in various fields of science and technology. Especially remarkable is the considerable potential of this technology for detecting the illegal transport of radioactive materials and for no-invasive testing of the integrity of spent nuclear fuel in dry storage facilities for such fuel. For the implementation of muon tomography technology, the process of preliminary modeling of the experimental detector facility is important, which also requires verification of the obtained calculation results. For this purpose, the well-known Monte Carlo codes MCNP and Geant4 are mainly used. This results of the first cross-verification studies of MCNP6 and Geant4 codes are demonstrated in the paper. The study was performed on simple models for different materials and for different energies of the muons bombarding the research object. The recommended QGSP_BERT physics library was used in the Geant4 code. In the MCNP6 code, the recommended settings for cosmic particle simulations were used. The calculations showed that for low-energy muons, both codes give results that agree well with each other. This can be explained by the fact that similar libraries of evaluated nuclear data are used in the low-energy range. Regarding the muons of intermediate energies, there is a significant difference between the two codes, which may indicate differences in physical models. The modeling of high-energy muon transfer has better agreement between MCNP6 and Geant4 codes than for intermediate-energy muons, but significant differences are still observed for heavy nuclei.
References
1. IAEA. (2019). Nuclear Technology Review. GC(63)/INF/2.59 p. Available at: https://www.iaea.org/sites/default/files/gc/gc63-inf2_rus.pdf (in Russ.)
2. Morishima K., Nishio A., Kuno M. et al. (2017). Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons. Nature, vol. 552. pp. 386–390.
3. Zemskova S. G., Starkov N. I. (2015). [Methodological notes on the use of cosmic muons in radiography]. Kratkiye soobshcheniya po fizike FIAN [Brief communications on physics of the Lebedev Physical Institute], vol. 2, pp. 11–19.
4. Chatzidakis S., Chrysikopoulou S., Tsoukalas H. (2015). Developing a cosmic ray muon sampling capability for muon tomography and monitoring applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 804, pp. 33–42.
5. Schultz L. J., Borzdin K. N., Gomez J. J., Hogan G. E., Morris C. L., Priedhorsky W. C., Saunders A., Teasdale M. E. (2003). Cosmic ray muon radiography for contraband detection. Proceeding of AccApp’03. San Diego, CA: Los Alamos National Laboratory, 5 p.
6. Borozdin K., Hogan G., Morris C., Priedhorsky W. C., Saunders A., Schultz L. J., Teasdale M. E. (2003). Radiographic imaging with cosmic ray muons. Nature, vol. 422, pp. 277–278.
7. Donnard J. (2004). Rapport de synthèse. Department of Neutron Research. Uppsala University, INF.
8. Flodin A. (2005). Cosmic Muons for the Detection of High-Z Materials. Uppsala University, INF, UU-NF05 no. 4.
9. Gustafsson J. (2005). Tomography of canisters for spent nuclear fuel using cosmicray muons. Uppsala University, INF, UU-NF05 no. 8.
10. Jonkmans G., Anghel V. N. P., Jewett C., Thompson M. (2013). Nuclear waste imaging and spent fuel verification by muon tomography. Annals of Nuclear Energy, 22 p. Available at: https://arxiv.org/ftp/arxiv/papers/1210/1210.1858.pdf
11. Research in Estonia. Good-bye X-rays? New scanner technology sees through things. Research in Estonia: website. Available at: https://researchinestonia.eu/2020/09/15/goodbye-x-rays-new-scanner-technology-sees-through-things
12. Österlund M., Blomgren J., Donnard J., Flodin A., Gustafsson J., Hayashi M., Mermod P., Nilsson L., Pomp S., Wallin L., Öhrn A., Prokofiev A. V. (2006). Tomography of canister for spent nuclear fuel. Proceedings of the International Workshop on Fast Neutron Detectors and Applications (University of Cape Town, South Africa, April 3–6, 2006). 8 p.
13. Pesente S., Vanini S., Benettoni M., Bonomi G., Calvini P., Checchia P., Conti E., Gonella F., Nebbia G., Squarcia S., Viesti G., Zenoni A., Zumerle G. (2009). First results on material identification and imaging with a large-vol.me muon tomography prototype. Nucl. Instr. Methods Phys. Res. A, vol. 604, no. 3, pp. 738–746.
14. Gnanvo K., Grasso L. V., Hohlmann M., Locke J. B., Quintero A., Mitra D. (2011). Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors. Nucl. Instr. Methods Phys. Res. A, vol. 652, no. 1, pp. 16–20.
15. Procureur S. (2017). Muon imaging: Principles, technologies and applications. Nucl. Instr. Methods Phys. Res. A, vol. 878, pp. 169–179. DOI: 10.1016/j.nima.2017.08.004
16. Durham J. M., Guardincerri E., Morris C. L., Poulson D., Bacon J. D., Chichester D., Fabritius J., Fellows S., PlaudRamos K., Morley D., Winston P. (2016). Cosmic Ray Muon Imaging of Spent Nuclear Fuel in Dry Storage Casks. Journal of Nuclear Materials Management, vol. 842, pp. 48–53. DOI: 10.1016/j.nima.2016.10.040
17. Agostinelli S. et. al. (2003) GEANT4 — A simulation toolkit. Nucl. Instr. Methods Phys. Res. A, vol. 506, 250–303.
18. MacFadden N., Peggs S., Gulliford C. (2018). Development and Validation of a Geant4 Radiation Shielding Simulation Framework. Technical Report. Upton, NY: Brookhaven National Lab. DOI: 10.2172/1515417
19. Rocca P. L., Lo Presti D., Riggi F. (2018). Cosmic Ray Muons as Penetrating Probes to Explore the World around Us. In: Cosmic Rays, pp. 41–59. DOI: 10.5772/intechopen.75426.
20. Uretsky J. L. (1997). Penetration of cosmic ray muons into the Earth. Nucl. Instr. Methods Phys. Res. A, vol. 399, no. 2–3, pp. 285–300.
21. Antonuccio V., Bandieramonte M., Becciani U. (2017). The muon portal project: design and construction of a scanning portal based on muon tomography, Nucl. Instrum. Meth., vol. 845 pp. 322.
22. Geant4 Material Database. Available at: https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Appendix/materialNames.html
23. Allison J. et. al. (2016). Recent developments in GEANT4. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. Nucl. Instr. Methods Phys. Res. A, vol. 835, pp. 186–225.
24. Aguayo E., Kouzes R. T., Ankney A. S., Orrell J. L., Berguson T. J., Troy M. D. (2011). Cosmic Ray Interactions in Shielding Materials. PNNL-20693. Richland, WA: Pacific Northwest National Laboratory, 86 p. Available at: https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-20693.pdf
25. Persson D. (2018). Application of GEANT4 toolkit for simulations of high gradient phenomena, 19 p. Available at: https://uu.diva-portal.org/smash/get/diva2:1216988/FULLTEXT01.pdf.
26. Greulich C. R., Baciak J., Banerjee K., Chatzidakis S. (2018) MUFFSgenMC: An open source muon flexible framework for spectral generation for Monte Carlo Applications. Proceedings of the ICAPP 2018.
27. Goorley T., James M., Booth T., Brown F., Bull J., Cox L. J., Durkee J., Elson J., Fensin M., Forster R. A., Hendricks J., Hughes H. G., Johns R., Kiedrowski B., Martz R., Mashnik S., McKinney G., Pelowitz D., Prael R., Sweezy J., Waters L., Wilcox T., Zukaitis T. (2012). Initial MCNP6 Release Overview. Nuclear Technology, vol. 180, pp. 298–315.
28. Cinelli G., Tositti L., Mostacci D., Baréd J. (2016). Calibration with MCNP of NaI detector for the determination of natural radioactivity levels in the field. Journal of Environmental Radioactivity. vol. 155–156, pp. 31–37.
29. Sharma A., Sayyed M. I., Agar O., Tekin H. O. (2019). Simulation of shielding parameters for TeO2-WO3-GeO2 glasses using FLUKA code. Results Phys., vol. 13, p. 102199.
30. McKinney G. W., Armstrong H. J., James M. R., Clem J. M., Goldhagen P. (2012). MCNP6 Cosmic-Source Option. Proceedings of the ANS Annual Meeting (Chicago, IL, United States, June 24–28, 2012). Los Alamos, NM: Los Alamos National Laboratory.
If the article is accepted for publication in the journal «Industrial Heat Engineering» the author must sign an agreement on transfer of copyright. The agreement is sent to the postal (original) or e-mail address (scanned copy) of the journal editions.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License International CC-BY that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.